|
أرشيف المنتدى هنا نقل الموضوعات المكررة والروابط التى لا تعمل |
|
أدوات الموضوع | ابحث في الموضوع | انواع عرض الموضوع |
|
#1
|
|||
|
|||
![]()
(1) y' = (1/2) sec^(2)[x/2]
y=8-x (so) m = 1 (so) 1 = (1/2) sec^(2)[x/2] (so) 2 = sec^(2)[x/2] (so) sec [x/2] = sq. r. (2) (so) x/2 = 45 (so) x = 90 / 270 (2) y = sq. r. [25 - x^(2)] (so) y' = [-2x] / 2 sq. r. [25 - x^(2)] (so) y' (at x=3) = -6 / 8 (so) m = -2/3 eq. of tang. [y - 4] / [x - 3] = -2/3 (so) 3y + 2x - 6 = 0 at x=0 "intersection with y-axis" y = 2 point is (0,2) at y=0 "intersection with x-axis" x = 3 point is (3,0) the area of the triangle = (1/2) (2) (3) = 3 unit square (3) y = - [tan x] / [1- tan^(2) x] at x= 15 (so) y = - tan 2x = - tan 30 = - 1 / sq. r. (3) (5) v(h) = [(5+h)^2 - 2(5+h) +3] - [25 - 10 + 3] = h^(2) A(h) = v(h) / h = h you can get the averae as an exercise أرجو توضيح رقم 4 |
العلامات المرجعية |
|
|