|
أرشيف المنتدى هنا نقل الموضوعات المكررة والروابط التى لا تعمل |
مشاهدة نتائج الإستطلاع: ما هو تقييمك للامتحان ؟؟ | |||
سهل |
![]() ![]() ![]() ![]() |
21 | 22.11% |
متوسط |
![]() ![]() ![]() ![]() |
30 | 31.58% |
فوق المتوسط |
![]() ![]() ![]() ![]() |
27 | 28.42% |
صعب |
![]() ![]() ![]() ![]() |
17 | 17.89% |
المصوتون: 95. أنت لم تصوت في هذا الإستطلاع |
|
أدوات الموضوع | ابحث في الموضوع | انواع عرض الموضوع |
|
#1
|
||||
|
||||
![]()
اثبت أن ح ن = لـــو س ص^ ن ــ 1 متتابعة حسابية حيث س ، ص Э ح+ وإذا كانت س= 160 ,ص = 1 / 2 أوجد مجموع الحدود التسعة الأولى بدون الآلة الحاسبة ؟
الحل ح ن = لـــو س ص ^ن + 1 = لـــــــو س + لـــــــو ص^ ن ــ 1 ح ن = لــــو س + (ن ــ 1) لـــــو ص ح ن = لــــو س + ن لــــــو ص ــ لـــــو ص ح ن = لــــو س ــ لـــــو ص + ن لــــــو ص دالة من الدرجة الأولى فى ن ح ن = لـــو س ص^ ن ــ 1 متتابعة حـــــســابية أساسها ء = لــــو ص (نظرية ) ح1 = لـــو 160 × ( 1 / 2)^ 1 ــ 1 = لــــــو 160 × 1 = لـــــو 160 ﺣ ن = ( ن / 2 ) [ 2أ + ( ن – 1) ء ] جـ 2= ( 9 / 2 )[ 2 لــــو 160+ ( 9 – 1) لــــو 1 / 2] جـ 2 = ( 9 / 2 ) [ 2 لـــــو 160 + 8 لـــــو 1 / 2] جـ 2 = ( 9 / 2)× 2 [ لـــــو 160 + 4 لـــــو 1 / 2] جـ 2 = 9 [ لـــــو 160 + لـــــو 1 / 16] جـ 2 = 9 [ لـــــو 160 × 1 / 16 ] = 9 × لـــــــــو 10 = 9 × 1 = 9 |
العلامات المرجعية |
أدوات الموضوع | ابحث في الموضوع |
انواع عرض الموضوع | |
|
|