اهلا وسهلا بك فى بوابة الثانوية العامة ... سجل الان

العودة   بوابة الثانوية العامة المصرية > التعليم الثانوى الفنى > الثانوى الصناعى > صناعى نظام 3 سنوات > الصف الثالث

إضافة رد
 
أدوات الموضوع انواع عرض الموضوع
  #1  
قديم 08-05-2012, 02:14 PM
reda_egypt10 reda_egypt10 غير متواجد حالياً
عضو مجتهد
 
تاريخ التسجيل: Apr 2012
العمر: 45
المشاركات: 67
معدل تقييم المستوى: 13
reda_egypt10 is on a distinguished road
Icon114 مزكره تحكم قسم كهرباء الاستاذ / رضا الشحات تلحوين الصناعيه بالزقازيق


باسورد : 2080751
الباب الأول


الجبر المنطقي ( الجبر البولينى )








يحتوى هذا الباب على :


1-1 مقدمة
1-2 الحساب المنطقي
1-2-1 القوانين المتعلقة بالحساب المنطقي
1-2-2 خواص الجبر المنطقي
1-3 نظرية دى مورجان
1-4 تجميع البوابات المنطقية
1-5 أشكال فن Vann – خرائط كارنوف واستخدامهما في تحليل المعادلات المنطقية



































1-1 مقدمة
درست في العام الماضي البوابات المنطقية (logic gates) فتعال معا نتذكر بعضاً من هذه البوابات والتي تعتبر الأساس في تكوين العلاقات في الجبر المنطقي .
بوابة النفي (العكس) NOT gate
وهى بوابة منطقية يكون خرجها output معاكس (complement) لدخلها input ،
أي أن :
إذا كان الدخل يساوى 1 فإن الخرج يساوى 0 ، أما إذا كان الدخل يساوى 0 فإن الخرج يساوى 1 ، شكل (1-1) يبين رمز بوابة NOT ، جدول (1-1) يبين جدول الحقيقة للدخل والخرج .
شكل (1-1) بوابة النفي ( العكس) NOT gate
الخرج output
الدخل input
1
0
0
1
جدول (1-1) جدول الحقيقة لبوابة النفي ( العكس) NOT gat
بوابة " و " AND gate
ويكون لها دخلان أو أكثر وخرج واحد ، شكل ( 1- 2 ) يبين رمز بوابة AND .
جدول ( 1-2) يبين جدول الحقيقة للدخل والخرج.
شكل (1-2) يبين بوابة " و " (AND gate)
C
B
A
0
0
0
0
1
0
0
0
1
1
1
1

جدول (1-2) جدول الحقيقة لبوابة " و " (AND gate)

بوابة " أو "( OR gate)
ويكون لها دخلان أو أكثر وخرج واحد ؛ شكل ( 1- 3 ) يبين رمز بوابة OR . جدول ( 1-3) يبين جدول الحقيقة للدخل والخرج .
شكل (1-3) بوابة " أو" (OR gate)
C
B
A
0
0
0
1
1
0
1
0
1
1
1
1

جدول (1-3) جدول الحقيقة لبوابة " أو" (OR gate)
البوابات المنطقية الثلاث السابقة هي البوابات الأساسية التي تدخل في تكوين باقي البوابات المنطقية مثل NAND ، NOR ، XOR ، XNOR .


1-2 الحساب المنطقي

نظراً لوجود كثيراً من الدوائر المنطقية المعقدة لذا وجب إيجاد سبلاً لجعلها بسيطة بقدر الإمكان عن طريق اختصار بعض المتغيرات لتحويلها إلى تعبيرات أبسط للوصول إلى نفس النتائج في ظل جميع الظروف الممكنة ، ثم يتم تنفيذها بأبسط وأصغر المكونات ، هذا بدوره يوفر ثمن البوابات المنطقية التي لا تأثير لها ويقلل من عددها مما يقلل من ثمنها .
تمكن العالم جورج بول George Boole الذي كان أول من وضع أسس وقواعد الجبر المنطقي أو ما يسمى بالجبر البولينى Boolean Algebra عام 1854 ، وقد توصل العالم جورج بول إلى عدة قواعد هي :

1- المتغير المنطقي Logic Variable
المتغير المنطقي هو رمز يستخدم لتمثيل قيمة منطقية ، وهذا المتغير لا يأخذ إلا واحدة من القيمتين ( 0 ) أو ( 1 ) .
2- عملية العكس ( التكميل) Complement
حيث أن المتغير المنطقي لا يأخذ إلا قيمة واحدة من القيمتين ( 0 ,1 ) ؛ فإن عملية عكس (تكميل) أي متغير عبارة عن استبدال قيمة المتغير الحالية بالقيمة الأخرى . فإذا كان المتغير رمزه A فإن عملية العكس تأخذ الرمز.

فلو فرضنا أن A = 1 تكون 0 = والعكس بالعكس أي أن
A =




1-2-1 القوانين المتعلقة بالجبر البولينى
* عمليات AND))
شكل (1-4) دخل وخرج بوابة AND
إذا كان X, Y دخلان متغيران لبوابة AND المنطقيةيكون الخرج مساوياً X.Y
( تقرأ X أند Y ) كمافيشكل (1-4).

استنتاج
من بوابة AND نستنتج أن
X.0 = 0
X.1 = X
X.X = X
مثال توضيحي
إذا كان X = Y فإن
X.Y = X.X = X
أي عند X = 1 كان الخرجيساوى1
وعند X = 0 كان الخرج يساوى 0

* عمليات OR (+)
شكل (1-5) دخل وخرج بوابة OR
إذا كان X , Y دخلان متغيران لبوابة OR المنطقيةيكون الخرج مساوياً X+Y
( تقرأX أور Y ) كما في شكل (1-5).

استنتاج
X + 0 = X
X + 1 = 1
X + X = X

* عمليات NOT
شكل (1-6 أ) دخل وخرج بوابة NOT
استنتاج

* النفي المزدوج
شكل (1-6 ب) النفي المزدوج لبوابة NOT
1-2-2 خواص الجبر المنطقي
اشتقت من العمليات الأساسية السابقة مجموعة من القوانين والنظريات الهامة والتي تستخدم في تبسيط الدوائر المنطقية وفيما يلي أهمها :
1- قانون الإبدال Commutative law
a-. X + Y = Y + X
b-. X . Y = Y . X
2- قانون التجميع ( الضم ) Associative law
a-. X+Y+Z = X+(Y+Z) = (X+Y) + Z
b-. X.Y.Z = X. (Y.Z) = (X.Y).Z
3- قانون التوزيع Distributive law
a-. X . (Y+Z) = (X.Y) + (X.Z)
b-. X + (Y.Z) = (X+Y) . (X+Z)
مثال (1-1)
اختصر
1-
2-
3-
الحل
1-
=التوزيع
=)حيث (
2-
=
(حيث ) =
3-
=
=)= 0) حيث
=

1-3 نظرية دى مورجان De Morgan Theorem

دى مورجان عالم رياضيات أضاف نظريتين لنظريات الجبر المنطقي ويمكن صياغتهما كما يلي :
1-
وتنص هذه النظرية على أن نفى (NOT ) مضروب (AND ) أي عدد من المتغيرات يساوى مجموع (OR ) نفى (NOT ) هذه المتغيرات.
2-
وتنص هذه النظرية على أن نفى (NOT ) مجموع (OR ) أي عدد من المتغيرات يساوى مضروب (AND ) نفى (NOT ) هذه المتغيرات.





مثال (1-2)
استخدم نظريتي دى مورجان للتعبير عن
1- F1=
2- F2= )
الحل
1- F1=
باستخدام نظرية دى مورجان (1)
F1=
2- F2=
باستخدام نظرية دى مورجان (2)
F2=
مثال (1- 3)
في مثال (1-2) أوجد القيمة المنطقية لكل من F1 ، F2 إذا كان
A = 1 , C = 0
1- F1 =
=
=
= 0
(خواص بوابة ANDالمنطقية يكون الخرج مساويا (0) عند أي قيمة دخل تساوى 0 ).
2- F2 =
=
F2 =
= 1
(خواص بوابة OR المنطقية يكون الخرج مساويا (1) عند أي قيمة دخل تساوى 1 ).
مما سبق نلاحظ أنه لا تأثير لقيم المتغيرين B ، D على قيمة الخرج F1 ، F2 عند
A = 1 , C = 0
أمثلة عامة
مثال (1-4)
ضع التعبير التالي في أبسط صورة
الحـــــــــــــــل

=
= التوزيع
= ) التوزيع
= =1)
مثال (1-5)
ضع التعبير في أبسط صورة
الحـــــــــــل
=

مثال (1- 6)

ضع التعبير في أبسط صورة
الحـــــل
=
=
=
=
مثال (1-7)

استخدم نظرية دى مورجان في تبسيط التعبير الآتي
الحــــــل
=(
=
=
نظرية دى مورجان =
=
مثال(1- 8)
إذا كان أوجد قيمة
الحــــــل
= =
المزدوج(العكسى)النفي =

1- 4 تجميع البوابات المنطقية
أي تعبير بوليني ( منطقي) يمكن تحويله من تعبير جبري إلى شكل بوابات منطقية بسيطة (AND , OR , NOT ).
مثال (1- 9)
ارسم الدائرة المنطقية لكل من التعبيرات المنطقية الآتية :
.
الحــــــــل
من هذا التعبير نجد انه لبوابة AND ذات ثلاثة مداخل أحدهم منفى () والشكل التالى يبين الدائرة المنطقية لهذا التعبير.
من هذا التعبير نجد انه يحتوى على بوابة AND ذات مدخلين أحدهما منفى ( ( وبوابة (OR ).
لاحظ أن الأسبقية لبوابة (AND ) قبل بوابة (OR ) . والشكل التالي يبين الدائرة المنطقية لهذا التعبير.
من هذا التعبير نجد انه يحتوى على بوابتي AND () ، () وبوابة (OR ) وبوابتي NOT. والشكل التالي يبين الدائرة المنطقية لهذا التعبير.



1- 5 أشكال فن Venn Diagram

درست في المرحلة الإعدادية أشكال فن التي تمثل العلاقة بين المتغيرات المختلفة في مادة الجبر ، وتعتبر أشكال فن أحسن وسيلة مرئية لتوضيح تعبيرات الجبر البولينى.
شكل فن في أبسط صورة عبارة عن مستطيل يرسم داخله دوائر متداخلة كل دائرة تمثل متغير ، جميع النقط التي بداخل الدائرة تنتمي إلى المتغير التي تمثله ؛ أما النقط خارجها فلا تنتمي إليها ( معكوس (نفى) المتغير).
شكل(1- 7 ) يبين شكل فن للمتغير X. كل النقط داخل الدائرة بمعنى X=1 ؛ أما خارجها () يكون X=0 .
شكل (1- 7 ) شكل فن لمتغير واحد X
أما في حالة وجود متغيران يلزم دائرتان متقطعتان داخل المستطيل الذي يحوى أربعة مساحات :
1- المساحة داخل تقاطع الدائرتين X.Y شكل (1- 8 أ) .
2- المساحة التي لا تنتمي إلى كل من الدائرة X والدائرة Y تكون شكل (1- 8 ب).
3- المساحة دخل الدائرة Y وخارج الدائرة X تكون شكل (1- 8ج).
4- المساحة دخل الدائرة X وخارج الدائرة Y تكون شكل (1- 8 د).
شكل (1- 8 ب) شكل (1- 8 أ)
شكل (1- 8ج) شكل (1- 8 د)
شكل (1- 8 ) أشكال فن للمتغيرين X , Y .
استخدام أشكال فن في إثبات صحة قوانين ونظريات الجبر البولينى

مثال (1- 10)
بين باستخدام أشكال فن صحة التعبير


الحـــــــل
شكل (1-9) يبين شكل فن للتعبير
من الشكل نجد أن أى بمعنى أن XY داخل الدائرة X ومن ذلك نستنتج أن التعبير صحيحاً
شكل (1-9) شكل فن للتعبير
مثال (1-11)
بين باستخدام أشكال فن صحة نظرية دى مورجان (2 )
الحـــــل
أشكال (1-11أ، ب، ج، د، هـ) تبين خطوات الحل:
1- شكل (ا-11أ) يمثل التعبير
2- شكل (ا-11ب) يمثل التعبير
3- شكل (ا-11ج) يمثل التعبير
4- شكل (ا-11د) يمثل التعبير
5- شكل (ا-11هـ) يمثل التعبير
الطرف الأيسر
شكل (ا-11ب) شكل (ا-11أ)
الطرف الأيمن
شكل (ا-11د) شكل (ا-11ج)
شكل (ا-11هـ)
شكل فن للطرف الأيسر شكل (ا-11ب) يماثل شكل فن للطرف الأيمن شكل (ا-11هـ)
الطرفان متساويان وهذا يثبت صحة نظرية دى مورجان
1 – 5 – 1 خرائط كارنوف Karnaugh Map
في بعض الأحيان نجد أن تطبيق الجبر البولينى (المنطقي) قد يكون صعباً في تبسيط بعض التعبيرات " مما يتطلب تذكر جميع القوانين والنظريات وتطبيق المناسب منها " ، وقد وضع العالم كارنوف خريطة بسيطة وسهلة لتبسيط التعبيرات البولينية مع متغيرين أو ثلاثة وحتى ستة متغيرات .
ما هي خريطة كارنوف ؟
خريطة كارنوف توفر طريقة سهلة مبسطة واضحة لتبسيط التعبيرات البولينية ويمكن وصفها بأنها ترتيب خاص لجدول الحقيقة Truth table .
شكل ( 1-12) يبين كيفية تحويل جدول الحقيقة إلى خريطة كارنوف لمتغيرين A,B والخرج F
خريطة كارنوف جدول الحقيقة
شكل ( 1-12) تحويل جدول الحقيقة إلى خريطة كارنوف لمتغيرين A,B

القيم داخل المربعات في خريطة كارنوف a,b,c,dهي قيم خرج كل صف من جدول الحقيقة وفقاً للترتيب غير الدائري كما هو موضح بالخريطة ، وحول حافة أعلا الخريطة من الخرج يوجد قيم دخل المتغير B ، وقيم المتغير A في الجانب الأيسر منها.
مثال توضيحي
ارسم خريطة كارنوف لبوابة OR
خطوات الحل
1- نبدأ بعمل جدول الحقيقة لبوابة OR.
2- من جدول الحقيقة نستنتج خريطة كارنوف طبقاً للخطوات التالية :-
- عدد المربعات في خريطة كارنوف يساوى العدد 2 مرفوعاً للأس المساوي لعدد المتغيرات .
عدد المتغيرات = 2 (A,
عدد المربعات = 22 = 4
- المربع رقم 1يمثل الرقم 0 ( F=0 لكل من A=0 , B=0 )
- المربع رقم 2يمثل الرقم 1 ( F=1 لكل من A=1 , B=0 )
- المربع رقم 3يمثل الرقم 1 ( F=1 لكل من A=0 , B=1 )
- المربع رقم 4يمثل الرقم 1 ( F=1 لكل من A=1 , B=1 )
- نرسم هذه الخريطة والتي تتكون من أربعة مربعات (خلايا) مرتبة في صفين وعامودين :
الصف الأول يمثل المتغير مع .
الصف الثاني يمثل المتغير مع .
العمود الأول يمثل المتغير مع .
العمود الثاني يمثل المتغير مع .
شكل (1-13) يبن رسم خريطة كارنوف من جدول الحقيقة لبوابة OR .
شكل (1-13) رسم خريطة كارنوف من جدول الحقيقة لبوابة OR

من شكل (1-13) نجد أن قيمة الخرج تساوى 1 عند A=1 مهما كانت قيمة B
وأن قيمة الخرج تساوى 1 أيضا عند B=1 مهما كانت قيمة A، نستنتج من ذلك

وهذا يطابق تماماً تعبير بوابة OR

مثال (1-12)
بسط التعبير البولينى التالى باستخدام خريطة كارنوف
الحــــل
خريطة كارنوف جدول الحقيقة
لاحظ ما يأتي:
إذا كان فإن
فإن
وبالمثل جميع المتغيرات .
من الخريطة نجد أن المربعات التي قيمتها تساوى 1 هي
وحيث أن المتغير Y له القيمتان (1,0 ) أي أنه ليس له تأثير في قيمة الخرج وعلى ذلك يمكن حذفه وتصبح العلاقة
ويمكن البرهنة على ذلك باستخدام الجبر البولينى

مثال (1-13)

باستخدام خريطة كارنوف بسط العلاقة التالية
الحـــل
خريطة كارنوف جدول الحقيقة
- نكون جدول الحقيقة ومنه نستنتج خريطة كارنوف .
- من خريطة كارنوف يمكن تقسيم الخرج ( 1 ) إلى مجموعتين :
المجموعة الأولى الأفقية (الصف الأول)
يمكن اختصار لعدم تأثيرهما على الخرج أى أن خرج هذه المجموعة يساوى
المجموعة الثانية الرأسية (العمود الأول)
يمكن اختصار لعدم تأثيرهما على الخرج أى أن خرج هذة المجموعة يساوى

فيصبح الخرج الكلى = خرج المجموعة الأولى + (OR ) المجموعة الثانية

ويمكن البرهنة على ذلك باستخدام الجبر البولينى
B
B
مثال (1- 14)
باستخدام خريطة كارنوف بسط التعبير البولينى التالي


الحـــل

من التعبير البولينى السابق نجد أن عدد المتغيرات ثلاثة (3 )
عدد الخلايا ( المربعات ) 23= 8 مربعات
يمكن اختيار أي متغيرين واعتبارهما كمتغير للأعمدة والمتغير الثالث كمتغير للصفوف
نختار YZ كمتغير للأعمدة فيكون عدد الأعمدة 4 ، والمتغير X للصفوف فيكون عدد الصفوف اثنان (2 ) .
- نكون جدول الحقيقة ومنه نستنتج خريطة كارنوف .
- من خريطة كارنوف يمكن تقسيم الخرج ( 1 ) إلى مجموعتين :
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
1
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
1
1
0
1
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
0
0
0
0
0

جدول الحقيقة
خريطة كارنوف
المجموعة الأولى الصف الأول
ويمكن اختصار وتصبح المجموعة مساوية للقيمة
المجموعة الثانية الصف الثاني
ويمكن اختصار وتصبح المجموعة مساوية للقيمة
فيصبح الخرج الكلى = خرج المجموعة الأولى + (OR ) المجموعة الثانية
مثال (1-15)
أعد كتابة العلاقة السابقة في أبسط صورة باستخدام خريطة كارنوف
الحــــل
عدد المتغيرات ثلاثة
عدد المتغيرات 23 = 8
يمكن اتخاذ BC كمتغير للأعمدة ، A متغير للصفوف ، وبالتعويض عن قيم المتغيرات المختلفة A, B, C نحصل على جدول الحقيقة الأتي
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
1
0
0
1
0
0
1
0
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
0
1
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
جدول الحقيقة
خريطة كارنوف
يمكن تجميع مجموعة الخلايا التي تحتوى على 1
المجموعة الأولى وهى مكونة من أربعة خلايا
قيمة المجموعة الأولى تساوى وذلك بعد اختصار ,
المجموعة الثانية وهى مكونة من خليتين
قيمة المجموعة الثانية تساوى وذلك بعد اختصار
الخرج الكلى = خرج المجموعة الأولى + (OR ) المجموعة الثانية





مثال (1- 16)
ما هو التعبير البولينى الذي تمثله خريطة كارنوف التالية
خريطة كارنوف
المجموعة الأولى
من مميزات خريطة كارنوف أنه يمكن لفها على شكل اسطوانة رأسية أو أفقية ، وعلى ذلك العمود أسفل 00 والعمود أسفل 10 يمثلان مجموعة واحدة :
قيمة المجموعة الأولى تساوى وذلك بعد اختصار
المجموعة الثانية
قيمة المجموعة الثانية تساوى وذلك بعد اختصار
الخرج الكلى = خرج المجموعة الأولى + (OR ) المجموعة الثانية

تمارين على الباب الأول




1- ضع التعبيرات البولينية الآتية في أبسط صورة
a-
b-
c-
d-

2- برهن باستخدام قوانين ونظريات الجبر البولينى أن

3- باستخدام الجبر البولينى بسط هذه التعبيرات
a)
b) (
للطلبة المتميزين
a)
b)
4- باستخدام نظريتي دى مورجان بسط التعبير التالي
5- إذا كان فأوجد
6- ارسم الدوائر المنطقية لكل من العلاقات الجبرية البولينية الآتية
a)
b)
c)
d)
e)
7- ارسم الدائرة المنطقية للخرج F6
بسط F6 ثم ارسم الدائرة المنطقية بعد التبسيط . أذكر ملاحظاتك للدائرة قبل وبعد التبسيط.
8- ارسم أشكال فن لتمثيل المتغيرات البولينية التالية
a)
b)
c)
d)
9- برهن على صحة العلاقة البولينية التالية وذلك باستخدام فن
10- التعبيرات البولينية التالية لها ثلاث إجابات صحيحة وواحدة خطأ ، وضح ذلك
1-
) (b) x (c) (d) )

2-
11- التعبيرات البولينية التالية لها إجابة واحدة صحيحة وضح ذلك
1)
2) )
12- باستخدام خريطة كارنوف بسط التعبير البولينى
13- بسط التعبير التالي بطريقتين مختلفتين
14- باستخدام خريطة كارنوف بسط التعبير التالي
15- أكتب التعبير الذي تمثله خريطة كارنوف التالية
16- أختار التعبير الصحيح الذي تمثله خريطة كارنوف التالية
17- بين كيف تستنتج التعبير البولينى الذي تمثله خريطة كارنوف التالية


















رد مع اقتباس
  #2  
قديم 08-05-2012, 05:14 PM
ا/توفيق عزت ا/توفيق عزت غير متواجد حالياً
العضو المميز للقسم الثانوى الصناعى لعام 2014
 
تاريخ التسجيل: Apr 2009
العمر: 65
المشاركات: 3,735
معدل تقييم المستوى: 0
ا/توفيق عزت is an unknown quantity at this point
افتراضي

الاخ المحترم
شكرا على مجهودك
المطلوب رفع المذكرة على ملف وورد الى المنتدى
لان النسخ و اللصق الذى كتبته انت يهمل الجداول و الكثير من التنظيم
__________________
لا للفلول - لا للبلطجية - لا لقتلة الشهداء - لا للحزن الوثنى
لا إله إلا أنت سبحانك إنى كنت من الظالمين
أ/توفيق عزت عبدالعزيز
رد مع اقتباس
  #3  
قديم 14-05-2012, 11:16 PM
reda_egypt10 reda_egypt10 غير متواجد حالياً
عضو مجتهد
 
تاريخ التسجيل: Apr 2012
العمر: 45
المشاركات: 67
معدل تقييم المستوى: 13
reda_egypt10 is on a distinguished road
افتراضي

اشكرك واسف لان دا اول مشاركه ليا ومكنتش لسة بعرف اتعامل مع الموقع
رد مع اقتباس
  #4  
قديم 16-03-2013, 09:03 PM
الصورة الرمزية عبدة قورة
عبدة قورة عبدة قورة غير متواجد حالياً
عضو لامع
 
تاريخ التسجيل: Feb 2010
المشاركات: 8,638
معدل تقييم المستوى: 23
عبدة قورة is on a distinguished road
افتراضي

جزاكم الله كل الخير
رد مع اقتباس
إضافة رد

العلامات المرجعية


ضوابط المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا يمكنك اضافة مرفقات
لا يمكنك تعديل مشاركاتك

BB code متاحة
كود [IMG] متاحة
كود HTML معطلة

الانتقال السريع


جميع الأوقات بتوقيت GMT +2. الساعة الآن 06:49 AM.