عرض مشاركة واحدة
  #1  
قديم 02-04-2014, 10:22 AM
بلبلة الصعيد بلبلة الصعيد غير متواجد حالياً
عضو مجتهد
 
تاريخ التسجيل: Aug 2013
المشاركات: 81
معدل تقييم المستوى: 12
بلبلة الصعيد is on a distinguished road
افتراضي

اقتباس:
المشاركة الأصلية كتبت بواسطة استاذ الاحمدى مشاهدة المشاركة
نعلم ان قيمة جاس وجتاس محصورة بين +1 و - 1 وفى حالة اعتبار هذه القيم والمحصورة بينها زوايا فإن منحنى الدالة
ص = حتا س أعلى من منحنى الدالة ص = جاس فى الفترة الصغيرة جدا س تنتمى [-1 , +1]
أى أن جتا(جاس) أكبر من حا(جتاس) لجميع قيم س ليس للفترة المعطاه فقط (هذا حل عام )
يمكن حل أخر بالتعويض بالقيم المعطاه فمثلا
عند س = 0 فإن جا (جتا0) = جا 1 =0.0175 و جتا(جا0) = جتا0 = 1 أى أن جتا(جاس) أكبر من جا(جتاس)
عند س = 90 فإن جا(جتا90) =جا0 = 0 و جتا(جا90) = جتا 1 = 0.9999 أى أن جتا(جاس) أكبر من جا(حتاس)
عند س =180 فإن جا(جتا180) =جا-ا =-0.0157 و جتا (جا180) = جتا0=1 أى أن جتا(حاس) أكبر من حا(جتاس)
ولكن الحل الأول هو الأفضل مع خالص دعائى بالتوفيق
شكرا لحضرتك وجزاااااااااااااااااااااااااك الله كل خير
__________________
يا رب قل لآحلامى كن لتكون يا رب العالمين
رد مع اقتباس