
Chapter 5

The Structure of Quantum Mechanics

In these pages we will outline the basics for the structure of wave mechanics on which

Schrodinger and Heisenberg quantum mechanics is based. We will use the wave vector

analogy at �rst to establish the formulation and will go through the rest of the topic smoothly.

The most important items of wave mechanics are

1. The wave function: it describes the state of the system. Di¤erent wave functions

describe di¤erent states of the system.

2. Uncertainty principle.

3.The probabilities

4. The expectation values

The most important of the structural elements of quantum mechanics are

1. The Eigenvalue equation: it is the equation of motion

2. The boundary condition

3.The commutation relations

4.Orthagonality relations

5. The expansion postulate

I. LINEAR VECTOR SPACES

A linear vector space # can be constructed once we de�ne a set of basis (unit vectors)

feig such that any vector V can be expanded in term of these bases. This expansion is

given by

V =
X
i

eivi (1)

The sum will run over all the allowed values. Obviously the number of values will corre-

spond to the dimensionality of the space. vi are the components of V.

Scalar product

The scalar product of two vectors V and U is de�ned by

V �U =V U cos � (2)
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Note that the scalar product on one vector with another is the projection of one vector

onto the other. If the two vectors are represented by areas then the scalar product is the

union between the two areas.

The basis are always assumed to be orthonormal such that

ei � ej = �ij (3)

Using the expansion in (1) and the de�nition of the scalar product (2), and the ortho-

normality condition 3, the components of V are given by

ej �V =
X
i

(ej � ei)vi =
X
i

vi�ij = Vj (4)

So that

V1 = e1 � V; V2 = e2 � V; V3 = e3 � V; ::::::etc

All vectors and basis do satisfy the conditions of linearity.

II. WAVEFUNCTIONS AS STATE VECTORS

Wave functions can be treated as vectors in an n-dimensional linear vector space whose

basis are complex functions of space and time. Customary an in�nite-dimensional space of

this sort is called Hilbert space.

Linear vector spaces of this sort can be constructed once we have a well-de�ned complete

set of basis (state vectors). In order to di¤erentiate these from ordinary vectors we denote a

vector by j > or j� > or j� > and would call it ket-vector. Also we will de�ne the symbols
<  j; < �j and < �j to be the conjugates of the ket-vectors, and we call them bra-vectors.

The relation between the vector and its conjugate is given by

<  j = j >y= (j >�)> (5)

j >yis called the Hermitian conjugate of <  j:
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A. Scalar Product

The scalar product of two state vectors <  j and < �j is de�ned as

<  j� >=< �j >y (6)

B. The Expansion Postulate

If we have available a complete set of state vectors say fji >g; and that this set is
orthonormal, i.e.,

< ijj >= �ij (7)

then this set can be used to construct a linear vector space such that any other state

vector can be expanded in terms of these basis as

j >=
X
i

 i ji > (8)

where  i are the components of j > : To �nd these components multiply both sides of

(7) by < jj

< jj >=
X
i

< jj i ji >=
X
i

 i < jji >=
X
i

 i�ji =  j (9)

so that

 i =< ij > (10)

Substituting (10) in (8) we get

j >=
X
i

ji >< ij > (11)

Since j > is arbitrary, therefore we can write

X
i

ji >< ij = 1 (12)

this is called the completeness condition.
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C. The Eigenvalue equation

The general eigenvalue equation is given by

Aj >= �j > (13)

where A is an operator and � is the corresponding eigenvalue. The eigenvalue correspond

to the value that would be obtained once we perform a measurement of the observable

corresponding to the operator in question. The expectation value of many measurements of

the e¤ect of the operation A is given by

< A >=<  jAj >= � <  j > (14)

If the measurement is performed between two di¤erent states of j > say j n > and

j m > the we have

<  njAj m >= ��nm (15)

The quantities

<  njAj m >= Anm = ��nm (16)

are called Matrix Elements of A.

Equation (13) can be solved both for the eigenvalues � and for the eigenvectors j > :

This can be easily realized once we know that the operator A is a square matrix and the

eigenvectors j > are column matrix. i.e.,

Anm =

0BBBBB@
A11 A12 : A1m

A21 A22

:

An1 Ann

1CCCCCA (17)

and
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j >=

0BBBBB@
 1

:

:

 n

1CCCCCA (18)

Obviously <  j is a row matrix

<  j =
�
 �1 : :  �n

�
(19)

So that <  njAj m > and is, generally a complex-number and

<  j >=
�
 �1 : :  �n

�
0BBBBB@
 1

:

:

 n

1CCCCCA = j 1j2 + ::::::+ j nj2 (20)

Note that

<  jAj >=< Ay j >=< � j >= �� <  j >

The eigenvectors contains all the information needed about the system it describes.

Also note that the eigenvalues of the Hamiltonian are always real, since they represent

the possible values of the energy. Also this applies to the eigenvalues of the momentum

operator.

Now we can then understand the meaning of the expansion coe¢ cients (or components)

of j > better. It is clear that if a measurement on j > is made then the value of such a

measurement would yield one of the eigenvalues. The probability of getting this eigenvalue

is j nj2:

j ij2 = j < ij > j2 (21)

Note that once j > is normalized then we should have the total probability equal 1.

<  j >= j 1j2 + ::::::+ j nj2 (22)

So each of the j nj2 represent a portion of the total probability to get the speci�ed
eigenvalue in a measurement. This is part of the beauty of quantum mechanics
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III. CONTINUOUS SYSTEMS

The above treatment assumed a discete value for the possible stes of the system, this ap-

plies, for example, to the energy states of a bound system. But if the values were continuous

then the Hilbert space is an in�nite dimensional linear vector space and the formulation will

change so that summations will become integrals. The formulation goes as follows:

The scalar product in (6) is then de�ned by

<  j� >=
Z
 ��dv (23)

where dv is the volume element and the integral is over all the covered space.

Obviously  (x) is said to square integrable which means that

Z 1

�1
j j2dx <1

The expansion postulate is given by

 (x) =

Z 1

�1
�(p)up(x)dp

Note that what we called earlier as the wave function in momentum space is really just

an expansion coe¢ cient, and with our interpretation, its absolute square j�(p)j2dp gives us
the probability that a momentum measurement on the system described by  (x) will yield

a value in the range (p; p+ dp).

The orthonormality relationships for the basis vectors up(x) becomes

Z 1

�1
up1(x)up2(x)dx = �(p1 � p2) (24)

where �(p1 � p2) is the Dirac delta function.

the expectation value of an operator is

< A >=<  jAj >=
Z 1

�1
 �(x)A (x)dx (25)

If we need to get the probablity of obtaining a given state of the system say j 1 > in one
certain measurement we have to calculate

j <  1j > j2 = j
Z 1

�1
 �1(x) (x)dxj2 (26)
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For discrete systems mostly we do not need to calculate the integrals.

IV. HERMITIAN OPERATORS

If an operator A satisfy the relation

<  jAj >=<  jAyj >=< A j > (27)

then A is called Hermitian operator.

In matrix form

(Anm) = (A
�
mn)

1. Theorem1

Eigenvalues of Hermitian operators must be real.

Proof: Let A be a Hermitian operator such that

Aj >= �j >

then according to the de�nition of the Hermitain operator we must have

<  jAj >=< A j >

that is,

<  j�j >= � <  j >=< � j >= �� <  j >

which means that

� = �� (28)

that is the eigenvalues are real
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2. Theorem2

Eigenvectors belonging to the same Hermitian operator but with di¤erent eigenvalues

must be orthogonal.

Proof: Let A be a Hermitian operator, and let j 1 > and j 2 > be two di¤erent eigen-

vectors belonging to A such that

Aj 1 >= �1j 1 > (29)

Aj 2 >= �2j 2 >

with �1 6= �2 6= 0: then since A is assumed to be Hermitian then,

<  2jAj 1 >=< A 2j 1 >

This means that

�2 <  2j 1 >= ��1 <  2j 1 >= �1 <  2j 1 >

which implies that

(�2 � �1) <  2j 1 >= 0

This means that

<  2j 1 >= 0 (30)

which implies orthogonality.

V. SIMULTANEOUS EIGENVECTORS AND DEGENERACY

A. Simultaneous Eigenvectors

If an eigenvector belongs to two di¤erent operators like A and B, then this eigenvector is

said to be simultaneous for A and B. The general condition for this to happen is that both

A and B should commute. To see this let jua > be an eigenvector belonging to A and B

such that
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Ajua >= ajua > : (31)

Bjua >= bjua > :

Now

ABjua >= abjua >

BAjua >= bajua >= abjua > :

This means that

(AB �BA)jua >= 0;

which means that

AB �BA = [A;B] = 0; (32)

therefore both operators commute.

Conversily if we have two operators A and B such that [A;B] = 0; then we can �nd an

eigenvector that will belong to both A and B simultaneously.This is seen as follows:

If

ABjua >= aBjua >

then this means that Bjua > is an eigenvector of A therefore we can say it is proportional
to jua > say bjua > : So that

ABjua >= abjua > :

B. Degenerate states

These are di¤erent states that belong to the same operator A but with the same eigen-

value, i.e.,
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Aju(1)a >= aju(1)a > (33)

Aju(2)a >= aju(2)a >

Now for the operator B we expect that

Bju(1)a >= b11ju(1)a > +b12ju(2)a >

Bju(2)a >= b21ju(1)a > +b22ju(2)a >

So that

B(ju(1)a > +�ju(2)a >) = (b11 + �b12)ju(1)a > +(b21 + �b22)ju(2)a >

= b�(ju(1)a > +ju(2)a >):

provided that

� =
b12 + �b22
b11 + �b21

(34)

This is a quadratic equation that one can solve for � to get b+ and b�.

C. Uncertainty Relations

The uncertainty of an observable A is de�ned by

(�A)2 =< (A� < A >)2 =< A2 � 2A < A > + < A >2> (35)

=< A2 > � < A >2

If A and B are two operators such that

[A;B] = iC (36)

then
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(�A)2(�B)2 > < C >2

4
(37)

Observables obeying the above relationship are called complementary.

Example

We know that

[x; p] = i~

then

(�x)2(�p)2 > ~2

4
(38)

x and p are called complementary observables.

VI. TIME DEPENDENCE AND THE CLASSICAL LIMIT

The time-dependent expectation value of an operator A is given by

< A >t=<  jAj > (39)

and

d

dt
< A >t=

i

~
hH jAj i+ hdA

dt
i � i

~
h jAHj i

= hdA
dt
i+ i

~
h j[H;A]j i

If A itself is time-independent, then

d

dt
< A >t=

i

~
h j[H;A]j i (40)

where H is the Hamiltonian operator given by

H =
p2

2m
+ V (x) (41)

Equation (40) is normaly called the Equation of Motion.

Examples:
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Take A = x

Show that

d

dt
< x >= hP

m
i (42)

Take A = p

Show that

d

dt
< p >= �hdV (x)

dx
(43)

So that from (42) and (43) we get

m
d2 < x >

dt2
= �hdV (x)

dx
i (44)

This is similar to the classical equation of motion.

We cannot claim that

< x >= xcl

because

hdV
dx
i 6= d

d < x >
V (< x >)

Only in case that V (x) is a very slowly varying function of x that we can make such

approximation.

VII. SOLUTION OF THE EIGENVALUE EQUATION

Now that we have understood that A is a square matrix, then by (15) it is clearly realized

that we can solve for the eigenvalues of A through solving the secular equation

det jAmn � ��mnj = 0 (45)

from this equation we should obtain enough number of algebraic equations that would

be solved to �nd the di¤erent eigenvalues. Then we can substitute these eigenvalues in the

matrix representation of A and operate on j > assuming that, for example
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j >=

0BBBBBBBB@

a

b

:

:

g

1CCCCCCCCA
(46)

and then solve for a; b; :::::g, to �nd the di¤erent eigenvalues.

VIII. CHANGE OF BASIS AND THE UNITARY TRANSFORMATION

A state vector j > that is expanded in a Hilbert space having complete set of basis ji >
can be also expanded in another set of basis say ji 0

> such

j >=
X
i 0

ji 0
>  

0

n

where

 n =< i
0j >

The relation between ji > and ji 0
> is given by

ji 0
>= U yji >

Such a transformation is called Unitary (or Similarity) transfornation where U is a uni-

tary matrix satisfying

U yU = I

The expansion in another basis can be used to diagonalize a given matrix. This is useful

when calculationg the eigenvalues for a given Hamiltonian. If the Hamiltonian matrix is

diagonal then we can take the diagonal elements as eigenvalues. But if the matrix is not

diagonal we can diagonalize it using the unitary matrix U by constructing

H
0
= U yHU
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The method to construct U is to take the column eigenvectors for H and set them as a

square matrix. This will be shown toward the end of the following example.

Example
Given that

M =

0BBB@
0 �i 0
i 0 0

0 0 0

1CCCA (47)

Find the eigenvalues and the normalized eigenvectors of M .

Solution

M j >= �j >

In matrix form

0BBB@
0 �i 0
i 0 0

0 0 0

1CCCA
0BBB@
 1

 2

 3

1CCCA = �

0BBB@
 1

 2

 3

1CCCA
The secular equation is

det

0BBB@
�� �i 0

i �� 0

0 0 ��

1CCCA = 0

This gives

��

������ �� 0

0 ��

�������(�i)
������ i 0

0 ��

������+0 = 0 =) ��3+� = 0 =) �2�1 = 0 =) � = �1 and � = 0

The corresponding Eigenvectors can be obtained by substituting for each of these eigen-

values.

For � = 1:
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0BBB@
�1 �i 0

i �1 0

0 0 �1

1CCCA
0BBB@
 1

 2

 3

1CCCA = 0

This matrix equation gives

� 1 � i 2 = 0

i 1 �  2 = 0

 3 = 0

If we assume that  1 = 1, then  2 = i and  3 = 0: The eigenvector will be then

ju1 >= c1

0BBB@
1

i

0

1CCCA
c1 is a normalization constant. Normalization means that

< u1ju1 >= 1 =) c�1c1

�
1 �i 0

�0BBB@
1

i

0

1CCCA = 1 =) jc1j2 =
1

2
=) c1 =

1p
2

Therefore

ju1 >=
1p
2

0BBB@
1

i

0

1CCCA
For � = 0:

0BBB@
0 �i 0
i 0 0

0 0 0

1CCCA
0BBB@
 1

 2

 3

1CCCA = 0

This matrix equation gives
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�i 2 = 0

i 1 = 0

 3 = 1

so that

ju2 >= c2

0BBB@
0

0

1

1CCCA
to �nd c2

< u2ju2 >= 1 =) c�2c2

�
0 0 1

�0BBB@
0

0

1

1CCCA = 1 =) jc2j2 = 1 =) c2 = 1

For � = �1:

0BBB@
1 �i 0
i 1 0

0 0 1

1CCCA
0BBB@
 1

 2

 3

1CCCA = 0

This matrix equation gives

 1 � i 2 = 0

i 1 +  2 = 0

 3 = 0

so that

ju3 >= c3

0BBB@
1

�i
0

1CCCA
It is easy to see that c3 = 1p

2
so that
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ju3 >=
1p
2

0BBB@
1

�i
0

1CCCA
In order to diagonal the matrix M we construct �rst the unitary matrix U

U =

0BBB@
1p
2
0 1p

2

ip
2
0 �ip

2

0 1 0

1CCCA =
1p
2

0BBB@
1 0 1

i 0 �i
0
p
2 0

1CCCA
The conjugate matrix is

U y =
1p
2

0BBB@
1 �i 0

0 0
p
2

1 i 0

1CCCA
It is clear that

U yU =

0BBB@
1 0 0

0 1 0

0 0 1

1CCCA
Now the new matrix is

M
0
= U yMU

=
1

2

0BBB@
1 �i 0

0 0
p
2

1 i 0

1CCCA
0BBB@
0 �i 0
i 0 0

0 0 0

1CCCA
0BBB@
1 0 1

i 0 �i
0
p
2 0

1CCCA

=
1

2

0BBB@
2 0 0

0 0 0

0 0 �2

1CCCA =

0BBB@
1 0 0

0 0 0

0 0 �1

1CCCA :

This complete the solution.
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