Model (1)

First statics: Answer two only of the following questions

(a) If $3 \mathrm{~F}, 5 \mathrm{~F}$ and k Newtons are the magnitudes of three coplanar forces act at a point and the maximum and minimum value of their resultant equals 16 and 12 Newtons respectively, then find the value of F and k, given that the measure of the angle between the first and the second forces is 60°
(b) If $\vec{A}=3 \hat{i}-4 \hat{j}, \vec{B}=\hat{i}-2 \hat{j}$ and $\vec{C}=a \hat{i}+b \hat{j}$ where \vec{A}, \vec{B} and \vec{C} in the same plane, if $\overrightarrow{\mathbf{C}} \times \overrightarrow{\mathrm{B}}=4 \hat{\mathrm{k}}$, then
(i) find the value of a and b
(ii) find the algebraic projection of \vec{C} in direction of \vec{A}
(a) A body of weight " w " New is suspended by two strings, the first inclines by an angle of measure θ to the vertical passing over a smooth pulley and carries at its other end a body of weight 12 New, the other string form with the vertical 30°, passing over a smooth pulley and carries at its other end a body of weight 8 New, find w and θ
(b) $A B C D$ is a rectangle in which $A B=8 \mathrm{~cm}, B C=12 \mathrm{~cm}$. X is the mid - point of $\overline{A D}, Y \in \overline{A B}$ where $A Y=6 \mathrm{~cm}$. forces of magnitude 5 , $3 \sqrt{2}, 1,6$ Newtons acts a long $\overrightarrow{C X}, \overrightarrow{X Y}, \overrightarrow{Y B}, \overrightarrow{C B}$ respectively prove that the system of this forces equivalent to a couple and find the norm of its moment. also find the magnitude of the two forces act at A and C in direction parallel to $\overline{\mathrm{BD}}$ which make the system in equilibrium
(a) ABCD is a trapezium in which $m(\hat{B})=90^{\circ}, \overline{\mathrm{AD}} \| \overline{\mathrm{BC}}, \mathrm{AB}=8 \mathrm{~cm}$ $B C=15 \mathrm{~cm}, A D=9 \mathrm{~cm}$, forces of magnitude $\mathrm{F}, 44,68 \mathrm{New}$ acts at $\overrightarrow{D A}, \overrightarrow{D C}, \overrightarrow{A C}$ respectively, if the line of action of resultant of this forces passes through B, find F
(b) $A B$ is a rod of length 100 cm and weight 10 New acting at its mid point rests in horizontal position on two supports one of them at A and the other at point 25 cm from B what is the magnitude of the weight that should be suspended from the end $[B]$ of the rod so that

	the reaction on the support nearer to this end will six times its value at A, what is the value of reactions of them
	Second Dynamics: Answer two only of the following questions
4.	(a) A body is moving in a straight line so that its displacement vector $\overrightarrow{\mathbf{S}}$ is given as a function of the time t, by the relation $\overrightarrow{\mathbf{S}}=\left(3 t-1 / 2 t^{2}\right) \hat{c}$ the magnitude of $\overrightarrow{\mathbf{S}}$ is measured in meters and the time t in sec. prove that the motion is uniformly changing, and then find the distance covered by the body in the first nine seconds of its motion (b) A metal ball of mass 100 gm moves along a straight line with a uniform velocity $10 \mathrm{~m} / \mathrm{sec}$. in a dusty medium. if dust adher as to its surface at the rate of $0,06 \mathrm{gm}$ per second. find the mass of the ball and the force acting on it at any time t, given that at the beginning of motion the ball was completely free from any dust.
5.	(a) A body whose weight $2 \mathrm{~kg} . \mathrm{wt}$ ascends a distance of 120 cm along a line of greatest slope of smooth inclined plane of inclination 30° to the horizontal, calculate the increases in its potential energy (b) A particle was moving with uniform acceleration "a". it covered 400 cm in 10 sec . then it increased the acceleration to " 2 a ". So it covered another 700 cm in 10 sec , and its velocity at the end of this distance was $90 \mathrm{~cm} / \mathrm{sec}$, then it moved with retardation "3a" until it came to rest. Evaluate (A) and the total distance covered by the particle
6.	(a) A car (A) moving on a straight way measured the relative velocity of another car (B) coming from the opposite direction it was $140 \mathrm{~km} / \mathrm{h}$, when the $\operatorname{car}(\mathrm{A})$ reduced its velocity to its half and remeasured the relative velocity of a car (B) it found it $120 \mathrm{~km} / \mathrm{h}$, find the actual velocity of the two cars? (b) A train with 340 m length started its motion from rest with a uniform acceleration $6 \mathrm{~m} / \mathrm{sec}^{2}$, there is a man at the front of the train has a body, he project the body vertically upwards with velocity 49 $\mathrm{m} / \mathrm{sec}$ in the same instant of train's motion, determine if the body meet the train or not and give the reasons.

Answers of model (1)

First statics

1. (a) let the resultant of the second forces equals R_{1} $R_{1}^{2}=F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \alpha=9 F^{2}+25 F^{2}+2 \times 3 F \times 5 F \cos 60^{\circ}$ $R_{1}^{2}=49 F^{2} \Rightarrow R_{1}=7 F$
$R_{\text {max }}=R_{1}+K \Rightarrow 7 F+K=16 \rightarrow(1)$
$R_{\text {min. }}=\left|R_{1}-K\right| \Rightarrow|7 F-K|=12$
$7 \mathrm{~F}-\mathrm{K}=12 \rightarrow(2) \quad \mathrm{OR} \quad 7 \mathrm{~F}-\mathrm{K}=-12 \rightarrow(3)$
By adding (1) and (2) By adding (1) and (3)
$\xrightarrow{\text { (K) }}$ $14 \mathrm{~F}=4$
$14 \mathrm{~F}=28$
$\mathrm{F}=2$ from (1)
$K=4$

$$
\begin{aligned}
& \mathrm{F}=\frac{2}{7} \text { from (1) } \\
& \mathrm{K}=14
\end{aligned}
$$

(b) (i) $\because \overrightarrow{\mathrm{C}} / / \overrightarrow{\mathrm{B}}=4 \hat{\mathrm{k}} \Rightarrow \overrightarrow{\mathrm{C}}=\mathrm{m}(1,-2)=(\mathrm{m},-2 \mathrm{~m})$

$$
\begin{aligned}
& \overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{A}}=4 \hat{\mathrm{k}} \Rightarrow(\mathrm{~m},-2 \mathrm{~m}) \times(3,-4)=4 \hat{\mathrm{k}} \Rightarrow[-4 \mathrm{~m}+6 \mathrm{~m}] \hat{\mathrm{k}}=4 \hat{\mathrm{k}} \\
& 2 \mathrm{k} \hat{\mathrm{k}}=4 \hat{\mathrm{k}} \Rightarrow 2 \mathrm{~m}=4 \Rightarrow \mathrm{~m}=2 \\
& \overrightarrow{\mathrm{C}}=(2,-4) \Rightarrow \mathrm{a}=2, \mathrm{~b}=-4
\end{aligned}
$$

(ii) The alg. comp. of \vec{C} in direction of $\vec{A}=\frac{\vec{C} \quad \vec{A}}{\|A\|}$

The alg. comp. of \vec{C} in direction of $\vec{A}=\frac{(2,-4) \quad(3,-4)}{\sqrt{9+16}}=\frac{22}{5}=4.4$

2. (a)

\because A body is in equilibrium under the action of the forces $8,12, \mathrm{~W}$. \therefore We can use Lami's rule.

$$
\frac{8}{\sin (180-\theta)}=\frac{12}{\sin 150}=\frac{w}{\sin (\theta+30)}
$$

$\frac{8}{\sin \theta}=\frac{12}{\sin 150} \Rightarrow \sin \theta=\frac{8 \sin 150}{12}=\frac{1}{3}$
$\theta=19^{\circ} 28^{\prime} 17^{\prime \prime} \Rightarrow \frac{12}{\sin 150}=\frac{w}{\sin \left(19^{\circ} 28^{\prime} 17^{\prime \prime}+30\right)} \Rightarrow w=18.24 \mathrm{New}$
(b) $\operatorname{In} \triangle X D C$
$X C=\sqrt{36+64}=10 \mathrm{~cm}$ In $\triangle X A Y$
$X Y=\sqrt{36+36}=6 \sqrt{2} \mathrm{~cm}$
the forces $5,3 \sqrt{2}, 1,6$ in the same cyclic order
$\frac{\mathrm{F}_{1}}{\mathrm{CX}}=\frac{5}{10}=\frac{1}{2}$

$\frac{F_{2}}{X Y}=\frac{3 \sqrt{2}}{6 \sqrt{2}}=\frac{1}{2}$
D. $S .=\frac{1}{2}$
$\frac{F_{3}}{Y B}=\frac{1}{2}=\frac{1}{2}$
$\frac{F_{4}}{C B}=\frac{6}{12}=\frac{1}{2}$
Then this system equivalent to a couple
Area of quad. $X Y B C=$ area of $\quad A B C D-$ area of $\triangle X D C-$ area of $\triangle A X Y$
Area of quad. $\mathrm{XYBC}=8 \times 12-\frac{1}{2} \times 6 \times 8-\frac{1}{2} \times 6 \times 6=54 \mathrm{~cm}^{2}$
The norm of its moment $=(2 \times$ area of quad. XYBC$) \times \mathrm{D}$. S.
The norm of its moment $=-2 \times 54 \times \frac{1}{2}=-54$ New. cm
Fr
Let the forces (F, F) from a couple
$P=2 \times P_{1}=2 \times \frac{8 \times 12}{4 \sqrt{13}}=\frac{48}{\sqrt{13}} \mathrm{~cm}$
The system in equilibrium , then
$M_{1}+M_{2}=0 \Rightarrow-54+M_{2}=0$
$M_{2}=54 \quad \Rightarrow F \times \frac{48}{\sqrt{13}}=54 \Rightarrow F=\frac{9 \sqrt{13}}{8} \mathrm{New}$
(F)
3. (a) \vec{R} passes through $B \Rightarrow \sum M_{B}=0$ About B:

F	P
F	8
-68	$72 / 17$
-44	12

$P_{1}=\frac{9 \times 8}{17}=\frac{72}{17} \mathrm{~cm}$, and $P_{2}=15 \sin \theta=15 \times \frac{8}{10}=12 \mathrm{~cm}$
$\sum M_{B}=0 \Rightarrow 8 F-68 \times \frac{72}{17}-44 \times 12=0$
$8 \mathrm{~F}-228-528=0 \Rightarrow 8 \mathrm{~F}=816 \Rightarrow \mathrm{~F}=102 \mathrm{New}$
(b) $\mathrm{R}_{2}=6 \mathrm{R}_{1} \rightarrow(1)$

The rod in equilibrium
(1) $\mathrm{R}=0$
$\mathrm{R}_{1}+\mathrm{R}_{2}=10+\mathrm{w}$
$\mathrm{R}_{1}+6 \mathrm{R}_{1}=10+\mathrm{w}$

$$
7 \mathrm{R}_{1}=10+\mathrm{w} \quad \rightarrow(2)
$$

(2) $\sum M_{B}=0 \Rightarrow-100 R_{1}+10 \times 50-R_{2} \times 25=0$

But $R_{2}=6 R_{1}$ then $-100 R_{1}+500-6 R_{1} \times 25=0$ $250 R_{1}=500 \Rightarrow R_{1}=2 \Rightarrow R_{2}=12$, \quad From (2) $\Rightarrow w=7 \times 2-10=4$

Second Dynamics

4. (a) $\overrightarrow{\mathbf{s}}=\left(3 t-1 / 2 t^{2}\right) \hat{c} \Rightarrow \vec{V}=\frac{d \vec{S}}{d x}=(3-t) \hat{c} \Rightarrow \vec{a}=\frac{d \vec{V}}{d x}=-\hat{c}$

Then the motion is uniformly changing
$V=0 \Rightarrow 3-t=0 \Rightarrow t=3$
$\overline{\mathrm{S}_{\mathrm{t}=3}}=(9-4.5) \hat{\mathrm{c}}=4.5 \hat{\mathrm{c}}$
$\mathrm{S}_{\mathrm{t}=3}=4.5 \mathrm{~m}$

$\overrightarrow{\mathrm{S}_{\mathrm{t}=6}}=0 \hat{\mathrm{C}} \Rightarrow$ The body returns to the initial point after 6 sec . then

$$
\overline{S_{t=9}}=(27-40.5) \hat{c}=-13.5 \hat{c} \Rightarrow S_{t=9}=-13.5 \mathrm{~m}
$$

The distance $=2 \times 4.5+13.5=22.5 \mathrm{~m}$
(b) $u=1000 \mathrm{~cm} / \mathrm{sec}, \quad \frac{\mathrm{dm}}{\mathrm{dt}}=0.06 \mathrm{gm}$ per. sec.,$\quad \mathrm{m}(\mathrm{t})=100+0.06 \mathrm{t}$ the body moves with uniform acceleration
$F=\frac{d}{d t}[m(t) \times V]$
$F=\frac{d}{d t}[(100+0.06 t) \times 1000]=1000 \times 0.06=60$ dyne

5.) (a)

$\sin 30=\frac{h_{2}-h_{1}}{1.2} \Rightarrow h_{2}-h_{1}=1.2 \times \frac{1}{2}=0.6$ $\mathrm{w}=2 \times 9.8$ New increases of p. e. $=\operatorname{mg}\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)=19.6 \times 0.6$ increases of p. e. $=11.76$ joules

(b)

motion at $\overline{\mathrm{AB}}$

$\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \quad \Rightarrow \quad 400=V_{A} \times 10+\frac{1}{2} \mathrm{a} \times 100$
$\mathrm{V}_{\mathrm{A}}+5 \mathrm{a}=40 \rightarrow(1)$ But $\mathrm{V}=\mathrm{u}+\mathrm{at}$
$V_{B}=V_{A}+a \times 10 \quad \Rightarrow \quad V_{A}=V_{B}-10 a$
$\left(V_{B}-10 a\right)+5 a=40 \quad \Rightarrow \quad V_{B}-5 a=40 \rightarrow(2)$
motion at $\overline{B C}$
$\mathrm{S}=\mathrm{ut}+\frac{1 / 2 \mathrm{at}^{2}}{} \quad \Rightarrow \quad 700=\mathrm{V}_{\mathrm{A}} \times 10+\frac{1}{2}(2 \mathrm{a}) \times 100$
$\mathrm{V}_{\mathrm{B}}+10 \mathrm{a}=70 \rightarrow(3) \quad$ mult (2) by 2 and add to (3)

$$
\begin{array}{r}
2 V_{B}-10 a=80 \\
V_{B}-10 a=70
\end{array}
$$

-------- add
$3 V_{B}=150 \Rightarrow V_{B}=50 \mathrm{~cm} / \mathrm{sec}$, from $(2) \Rightarrow 50-5 a=40 \Rightarrow a=2 \mathrm{~cm} / \mathrm{sec}^{2}$ motion at $\overline{\mathrm{CD}}$
$a=-3 \times 2=-6 \mathrm{~cm} / \mathrm{sec}^{2}, u=90 \mathrm{~cm} / \mathrm{sec}, V=0$
$\mathrm{V}^{2}=\mathrm{u}^{2}+2 \mathrm{aS} \Rightarrow 0=(90)^{2}+2(-6) \times S \Rightarrow S=675$
Total direction $=700+400+675=1775 \mathrm{~cm}$

6. (a) 1st case:

$v_{B A}=-140, v_{B A}=v_{B}-v_{A}=-140 \rightarrow(1)$

$2^{\text {nd }}$ case:
$v_{B A}=-120, \quad v_{B}-1 / 2 v_{A}=-120 \quad(\times 2)$
$2 \mathrm{v}_{\mathrm{B}}-\mathrm{v}_{\mathrm{A}}=-240 \rightarrow(2)$
Mult. (1) $\times(-1)$ And add
$-v_{B}+v_{A}=140$
$2 v_{B}-v_{A}=-240$
$-------\rightarrow$ add $\Rightarrow V_{B}=-100 \mathrm{~km} / \mathrm{h}, \xrightarrow{\text { from }(1)} \mathrm{V}_{\mathrm{A}}=-100+140=40 \mathrm{~km} / \mathrm{h}$

(b)

The motion of the body:
At the max. Height $V=0$ then
$V=u+g t \Rightarrow 0=49-9.8 t \Rightarrow t=5 \mathrm{sec}$
the body returned to the ground after 10 sec

The motion of thetrain:
$\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \Rightarrow \mathrm{~S}=0+\frac{1}{2} \times 6 \times 100 \Rightarrow \mathrm{~S}=300 \mathrm{~m}$
Then the body meet the train after the train cuts 300 m , and the left length of the train= $350-300=50 \mathrm{~m}$

Model (2)

First statics: Answer two only of the following questions
(a) Two forces of magnitude F and $F \sqrt{2}$ New act at a body and their resultant perpendicular to the first forces, find the angle between the two forces and prove that the magnitude of their resultant is F
(b) If $\vec{F}_{1}=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}, \vec{F}_{2}=3 \hat{i}-\hat{j}$ and $\vec{F}_{3}=-2 \hat{i}+5 \hat{j}$, are three forces act at the points $A=(5,-1), B=(3,2)$ and $C=(-2,5)$ respectively, where $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}$ are measured by Newtons, find :
(i) the magnitude and the direction of their resultant
(ii) the distance between the line of action of their resultant and the point $D=(-4,1)$
(a) A uniform ladder AB of weight 24 kg .wt, rests with its end A against a vertical smooth wall and with its other end B on a rough horizontal ground the ladder is in equilibrium when the end A is at a distance of 2.4 meters from the ground, and the end B at 2 meters from the wall, find the reaction of each of the wall and the ground. (b) $\overline{A B}$ is a uniform rod of length 120 cm and of weight 84 New, the rod can rotate easily in a vertical plane about a fixed horizontal pin passing through a small hole in the rod at point C where $\mathrm{AC}=30 \mathrm{~cm}$, a force of magnitude 84 New acts vertically upwards on the rod at A find the magnitude of force which acts at B indirection perpendicular to the rod which makes the rod in equilibrium such that the rod inclines at an angle 30 to the vertical and B above A
3. (a) $A B C D$ is a parallelogram in which $m(B D A)=90^{\circ}, m(A)=45^{\circ}$, $A D=6 \mathrm{~cm}$, forces of magnitude $50 \sqrt{2}, 20,30 \sqrt{2}, F$ New. act at $\overrightarrow{A B}, \overrightarrow{D A}, \overrightarrow{D C}, \overrightarrow{D B}$ respectively
(i) find the magnitude of F, given that the line of action of their resultant passes through the point A .
(ii) find the magnitude of their resultant, then prove that their resultant is parallel to $\overline{\mathrm{BD}}$
(b) $A B$ is a rod of length 120 cm and weight 60 New acting at its mid point, rests in a horizontal position on a support at B and is kept in

	equilibrium by means of string attached to a point of the rod 40 cm from the end A and carries a weight of magnitude 20 New at a point 20 cm from (A), find the tension in the string and the pressure on the support, what is the magnitude of weight that should be suspended from (A) in the order that the rod is about to separate from the support and what is the magnitude of tension in string at this instant?
	Second Dynamics: Answer two only of the following questions
4.	(a) A particle of unit of mass is moving so that velocity vector is given as a function of the time " t " in the form $\vec{V}=\left(A t^{2}+B t\right) \hat{i}$ where \hat{i} is a constant unit vector. find the constants A, B if the force acting on this particle is constant and is given by the relation $\vec{F}=5 \hat{i}$ (b) A steamer moves on a straight way towards a part when it is 45 km a part from the port an aeroplane passed over it in the opposite direction with velocity $250 \mathrm{~km} / \mathrm{h}$ it observed the steamer which seemed to the aeroplane as it is moving with velocity $256 \mathrm{~km} / \mathrm{h}$. calculate the time elased from the moment that the aeroplane observed the steamer till it reaches the port.
5.	(a) A cyclist moved towards east with a velocity of $4 \mathrm{~m} / \mathrm{sec}$ for 30 sec. then he stopped for 10 sec . then moved towards west with a velocity of $5 \mathrm{~m} / \mathrm{sec}$ for another 60 sec . calculate the average velocity during the whole Journey as well its direction. (b) A body fall from a height of 40 m from the ground surface, and in the same instant another body is projected vertically up wards with a velocity of $20 \mathrm{~m} / \mathrm{sec}$ from the ground surface, then the two bodies met after [t] sec. find: (i) The time [t] (ii) The distance covered by each body
6.	(a) If $\vec{r}=\left(3 / 2 t^{2}-2 t\right) \hat{c}$, find the displacement vector [$\left.\vec{s}\right]$ and find when this vector vanishes. Prove that the motion is retarded when $\mathrm{t}>\frac{2}{3}$ and accelerated when $\mathrm{t}<\frac{2}{3}$ (b) Find in kg . wt. m the work done by a force to move a body of mass 49 kg from rest with acceleration $5 \mathrm{~cm} / \mathrm{sec}^{2}$ in one minutes

Answers of model (2)

First statics

1. (a) $F_{1}=F, F_{2}=F \sqrt{2}, \alpha=$? , $R=$? , $\theta_{1}=90^{\circ}$
(i) $\stackrel{\rightharpoonup}{\mathrm{R}} \perp \overrightarrow{\mathrm{F}}_{1} \Rightarrow \theta_{1}=90^{\circ} \Rightarrow \mathrm{F}_{1}+\mathrm{F}_{2} \cos \alpha=0$
$F+F \sqrt{2} \cos \alpha=0 \quad(\div F)$
$1+\sqrt{2} \cos \alpha=0 \Rightarrow \cos \alpha=\frac{-1}{\sqrt{2}} \Rightarrow \alpha=135^{\circ}$
(ii) $\mathrm{R}^{2}=\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}+2 \mathrm{~F}_{1} \mathrm{~F}_{2} \cos \alpha$
$R^{2}=F^{2}+2 F^{2}+2 F \times \sqrt{2} F \times \frac{-\sqrt{2}}{2}$
$R^{2}=F^{2}+2 F^{2}-2 F^{2}=F^{2} \Rightarrow R=F$
(b) (i) $\vec{R}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=(1,-2)+(3,-1)+(-2,5)=(2,2)$
$R=\sqrt{4+4}=2 \sqrt{2} \mathrm{New}$
$\tan \theta=\left|\frac{\mathrm{Y}}{\mathrm{X}}\right|=\frac{2}{2}=1 \Rightarrow \theta=45^{\circ}$
then the magnitude of their resultant equals $2 \sqrt{2}$ New and makes angle of measure 45° with positive direction of X-axis
(ii) Let the length of perpendicular segment between their resultant and the point $\mathrm{D}=\mathrm{X} \mathrm{cm}$
$\sum \vec{M}_{\mathrm{M}}=\overrightarrow{\mathrm{AD}} \times \overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{BD}} \times \overrightarrow{\mathrm{F}}_{2}+\overrightarrow{\mathrm{CD}} \times \overrightarrow{\mathrm{F}}_{3}$
$\sum \vec{M}_{0}=(-9,2) \times(1,-2)+(-7,-1) \times(3,-1)+(-2,-4) \times(-2,5)$
$\sum \overline{\mathrm{M}}_{\mathrm{o}}=[18-2] \hat{\mathbf{k}}+[7+3] \hat{\mathbf{k}}+[-10-8] \hat{\mathbf{k}}=8 \hat{\mathbf{k}}$
$\left\|\sum \overrightarrow{\mathrm{M}_{\mathrm{o}}}\right\|=8 \Rightarrow \mathrm{R} \times \mathrm{X}=8 \Rightarrow 2 \sqrt{2} \times \mathrm{X}=8 \Rightarrow \mathrm{X}=2 \sqrt{2} \mathrm{~cm}$
then the distance between the line of action of their resultant and the point $D=2 \sqrt{2} \mathrm{~cm}$
2. (a) $\overline{E D} \| \overline{A C}$ and $A E=E B \quad, C D=D B=1 \mathrm{~m}$
$\mathrm{MB}=\mathrm{LD}=\mathrm{AC}=2.4 \mathrm{~m}$
In \triangle LIB:
$m(\hat{M})=90^{\circ}$

$(L B)^{2}=(M B)^{2}+(M L)^{2}=(1)^{2}+(2.4)^{2}$
$\therefore \mathrm{LB}=2.6 \mathrm{~m}$
The ladder in equilibrium under the forces $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{~W}$
Δ LBM Is a triangle of forces
$\frac{\mathbf{R}_{1}}{1}=\frac{\mathbf{R}_{2}}{2.6}=\frac{24}{2.4} \Rightarrow R_{1}=10 \mathrm{New}, R_{2}=26 \mathrm{New}$
(b) Forces 84,84 form couple $C_{1}(84,84) \Rightarrow M_{1}=84 \times 30=2520$
The rod in equilibrium then F, R must form a couple
Where ($F=R$) then
$C_{2}(F, F) \Rightarrow M_{2}=-F \times 90=-90 \mathrm{~F}$
C_{1}, C_{2} Are in equilibrium $\Rightarrow M_{1}+M_{2}=0$
$2520-90 \mathrm{~F}=0 \Rightarrow 90 \mathrm{~F}=2520$
$F=28 \Rightarrow F=R=28 \mathrm{New}$

3. (a)

(i) $\because \overrightarrow{\mathrm{R}}$ passes through the point A
$\therefore \sum M_{A}=0 \Rightarrow-F \times 6+30 \sqrt{2} \times 3 \sqrt{2}=0$
$F=30$ New

(b) 1st case:

The rod in equilibrium
(1) $R=0$

$$
R+T=20+60
$$

$\mathrm{R}+\mathrm{T}=80 \rightarrow(1)$
(2) $\sum M_{B}=0$
$20 \times 100+60 \times 60-\mathrm{T} \times 80=0$
$\mathrm{T}=70 \mathrm{New}$
from (1): $\Rightarrow R=10 \mathrm{New}$
$2^{\text {nd }}$ case:
The rod in equilibrium
(1) $R=0$
$\mathrm{T}=\mathrm{w}+20+\mathbf{6 0 \Rightarrow \mathrm { T } = \mathrm { w } + 8 0}$

(2) $\sum M_{D}=0$
$w \times 40+20 \times 20-60 \times 20=0$
$w=20 \mathrm{New}$
from (1): $\Rightarrow \mathrm{T}=100 \mathrm{New}$

Second Dynamics

4.) (a) $\vec{V}=\left(A t^{2}+B t\right) \hat{i} \Rightarrow V=A t^{2}+B t \quad a \quad a=2 A t+B$ but the body moves with uniform acceleration then $a=$ constant $\Rightarrow A=0 \Rightarrow a=B$ and $F=5$ the equation of motion:
$\mathrm{ma}=\mathrm{F} \quad \Rightarrow \quad 1 \times B=5 \quad \Rightarrow \quad B=5$
(b) $\mathrm{v}_{\mathrm{SA}}=256 \mathrm{~km} / \mathrm{h}$
$v_{\mathrm{S}}-\mathrm{v}_{\mathrm{A}}=256$
$v_{s}+250=256$
$\mathrm{v}_{\mathrm{s}}=6 \mathrm{~km} / \mathrm{h}$

$\mathrm{T}=\frac{\mathrm{S}}{\mathrm{V}}=\frac{45}{6}=7.5 \mathrm{~h}$

5.) (a)
$\mathbf{1}^{\text {st }}$ stage:
$\mathrm{S}_{1}=\mathrm{V}_{1} \times \mathrm{t}_{1}=4 \times 30=120 \mathrm{~m}$
$2^{\text {nd }}$ stage:
$\mathrm{S}_{2}=\mathrm{V}_{2} \times \mathrm{t}_{2}=-5 \times 60=-300 \mathrm{~m}$
$\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}=120-300=-180 \mathrm{~m}$
$\mathrm{T}=30+10+60=100 \mathrm{sec}$.

$\mathrm{V}_{\mathrm{a}}=\frac{\text { resultant of desplacement }}{\text { total time }}=\frac{-180}{100}=-1.8 \mathrm{~m} / \mathrm{sec}$
The average velocity during the whole Journey $=1.8 \mathrm{~m} / \mathrm{sec}$
In west direction
(b) $S=u t+1 / 2 g t^{2}$
$\mathrm{S}_{1}=0+\frac{1}{2} \times 9.8 \mathrm{t}^{2} \Rightarrow \mathrm{~S}_{1}=4.9 \mathrm{t}^{2}$
$\mathrm{~S}_{2}=20 \mathrm{t}-4.9 \mathrm{t}^{2}$
But $\quad \mathrm{S}_{1}+\mathrm{S}_{2}=40 \Rightarrow 4.9 \mathrm{t}^{2}+20 \mathrm{t}-4.9 \mathrm{t}^{2}=40$
$t=2 \mathrm{sec}$
$\mathrm{S}_{1}=4.9 \mathrm{t}^{2}=4.9 \times 4=19.6 \mathrm{~m}, \mathrm{~S}_{2}=20 \times(2)-4.9(2)^{2}=20.4 \mathrm{~m}$
6. (a) (i) $\overrightarrow{\mathrm{r}}=\left(\frac{3}{2} \mathrm{t}^{2}-2 \mathrm{t}\right) \hat{\mathrm{c}}$ $\overrightarrow{\mathrm{r}}=\left(\frac{3}{2} \mathrm{t}^{2}-2 \mathrm{t}\right) \hat{\mathrm{c}}, \quad \overrightarrow{\mathrm{r}}_{0}=(0) \hat{\mathrm{c}}$

$$
\overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{r}}-\vec{r}_{0}=\left(\frac{3}{2} \mathrm{t}^{2}-2 t\right) \hat{c}
$$

 $\overrightarrow{\mathrm{S}}=0 \Rightarrow \frac{3}{2} \mathrm{t}^{2}-2 \mathrm{t}=0 \Rightarrow \mathrm{t}\left(\frac{3}{2} \mathrm{t}-2\right)=0$
$t=0 \quad$ or $\quad t=\frac{4}{3}$
(ii) $\vec{v}=\frac{d \vec{r}}{d t}=(3 t-2) \hat{c} \Rightarrow v=3 t-2 \vec{a}=\frac{d \vec{v}}{d t}=(3) \hat{c} \Rightarrow a=3$
$\mathrm{v}=0 \Rightarrow 3 \mathrm{t}-2=0 \Rightarrow \mathrm{t}=\frac{2}{3}$
(a) V. a <0 when $\mathrm{t}<\frac{2}{3}$ then the motion is retarded
(b) V . a >0 when $\mathrm{t}>\frac{2}{3}$ then the motion is accelerated
(b) $u=0, a=0.05 \mathrm{~m} / \mathrm{sec}^{2}, \mathrm{t}=60 \mathrm{sec}$
$\mathrm{S}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2}=0+\frac{1}{2} 0.05 \times(60)^{2}=90 \mathrm{~m}$
The body move with uniform acceleration:
$\mathrm{ma}=\mathrm{F} \Rightarrow \mathrm{F}=49 \times 0.05=2.45 \mathrm{~N}$
$\mathrm{w}=\mathrm{FS}=2.45 \times 90=\frac{220.5}{9.8} \Rightarrow \mathrm{w}=22.5 \mathrm{~kg} . \mathrm{wt} . \mathrm{m}$
$\mathrm{a}=0.05 \mathrm{~m} / \mathrm{sec}^{2}$
$\mathrm{u}=0$

