بعض قوانين الجبر

التباديل والتوافيق

١. ملخص قوانين التباديل

$$\frac{\mathsf{Y}-\dot{\mathsf{U}}}{|\dot{\mathsf{U}}-\dot{\mathsf{U}}|}(\dot{\mathsf{U}}-\dot{\mathsf{U}})\dot{\mathsf{U}}=\frac{\mathsf{V}-\dot{\mathsf{U}}}{|\dot{\mathsf{U}}-\dot{\mathsf{U}}|}\dot{\mathsf{U}}=\frac{\dot{\mathsf{U}}}{|\dot{\mathsf{U}}-\dot{\mathsf{U}}|}$$

يستخدم غالبا في اختصار المضروبات

ن $0 = \frac{10}{1000}$ يستخدم غالبا عندما تكون رغير معلومة

ملخص قوانين التوافيق :

ن ق ر = $\frac{0.00}{100}$ يستخدم غالبا إذا كانت ر معلومة

نتیجة ۱: $\frac{|\dot{0}|}{|\dot{0}|} = \frac{|\dot{0}|}{|\dot{0}|}$ یستخدم غالبا إذا کانت ر غیر معلومة

نتيجة $^{\circ}$: $^{\circ}$ ق $_{\circ}$ $_{\circ}$ $_{\circ}$ $_{\circ}$ $_{\circ}$ يسمى قانون التبسيط ويستخدم عندما ر > $^{\circ}$

نتيجة؛: نق_{ر + ن}ق_{ر - ،} = ن + اق

نظرية ذات الحدين بأس صحيح موجب

نظرية: إذا كان س ، أ عددين حقيقيين ، ن 🗲 ص + فإن: $\dot{0}^{\dot{0}} + \dots + \dot{0}^{\dot{0}} = \dot{0}^{\dot{0}} + \dot{0}^{\dot{0}} + \dot{0}^{\dot{0}} + \dot{0}^{\dot{0}} + \dot{0}^{\dot{0}} + \dot{0}^{\dot{0}} + \dot{0}^{\dot{0}} = \dot{0}^{\dot{0}}$

نتيجة: إذا كان س 🗲 ح ، ن 🗲 ص فإن:

 $(1+m)^{0}=1+\frac{b}{b}$ س + $\frac{b}{b}$ س + $\frac{b}{b}$ س + $\frac{b}{b}$ س التصاعدية

 $(1-m)^{0} = 1-\frac{b}{b}$ س $+\frac{b}{b}$ س $+\frac{b}{b}$ س $+\frac{b}{b}$ س التصاعدية

 $(m+1)^{\dot{0}} = m^{\dot{0}} + {}^{\dot{0}}$ ق, س $^{\dot{0}-1} + {}^{\dot{0}}$ بس $^{\dot{0}-1} + \dots + 1$ حسب قوی س التنازلية

الحد العام في مفكوك (س + أ) $^{\circ}$

 $(w+1)^{\dot{c}} = w^{\dot{c}} + {}^{\dot{c}}$

(الحد الأوسط - الحدان الأوسطان) في مفكوك ذات الحدين

أوُلا: إذا كانت ن زوجية فإن عدد حدود المفكوك (ن + ١) يكون فرديا ويوجد حد أوسط واحد

ثانيا: إذا كانت لل فردية فإن عدد حدود المفكوك (ن + ١) يكون زوجيا ويوجد حدان أوسطان

رتبتا مو البيار ، البيار مواتبت ، البيار مواتبت ، البيار مواتبت المواتبت ، البيار مواتبت المواتبت المواتبت الم

النسبة بين كل حد والسابق له في مفكوك $(m+1)^{0}$ $\frac{\int_{c+1}^{c+1}}{\int_{c}^{c}} = \frac{\dot{c} - c + 1}{c} \times \frac{1}{m}$

تعریف: مجموعة الأعداد المراقبة كـ ك = { س + ت ص : س ، ص ﴿ ح ، ت ا = - ١ }

تساوي عددين مركبين:

 $w_1 + v_2 = w_1 + v_2 = w_1$

من هذا التعريف إذا كان س + ت ص حب فإن س = ٠ م ص = ٠ مجموع عددين مركبين:

حاصل ضرب عددین مرکبین:

إذا كان ع، = س، + ت ص، ، ع، = س، + ت ص، فإن

ع، ع، = (س، س، – ص، ص، + (س، ص، + س، ص،) ت خصائص جمع وضرب الأعداد المركبة

المعكوس الجمعي للعددع = س + ت ص هو العدد

(-3) = - كل ع (-3) = - كل ع (-3) = - كل ع (-3) = -

تعریف الطرح ع١ - ع٢ = ع١ + (- ع٢) المعكوس الضربي للعدد ع = س + ص ت هو العدد

العدد المرافق لعدد مركب

إذا كان ع = س + ت ص فإن العدد المركب ع = س _ ت ص يسمى مرافق العدد ع ملحوظة : ع ، ع يختلفان في الجزء التخيلي فقط خواص العددين المترافقين

(۱) ع+ع=۲س ∈ ح

(7) 3. 3 = $w' + w' \in T$

(7) 3, +3, = 3, +3,

(2) 3, .3, = 3, .3,

 \mathbf{r} تذکر $\mathbf{b}' + \mathbf{a}' = (\mathbf{b} + \mathbf{a})' - \mathbf{b}$ (b-a)' = (b+a)' - b

ملحوظة: إذا كانت معاملات حدود معادلة ما أعدادا حقيقية ووجد لها جذر مركب أ + ب ت (أ، ب ∈ ح) فإن مرافقه ع = أ ـ ب ت هو الآخر جذر لهذه المعادلة

المقياس والسعة _ الصورة المثلثية للعدد المركب

إذا كان العدد المركب ع = س + ص ت

اع|=ل=√√س + ص ً

- وتسمى θ سعة العدد المركب

وعموما إذا كانت θ سعة عدد مركب فإن كل من الأعداد θ + ۲ م d ، (م عدد صحيح) يكون أيضا سعة للعدد المركب ، قيمة θ التي تنتمي للفترة [٠ ، ٢ ط [تسمى " السعة الأساسية " للعدد المركب

الصورة المثلثية للعدد المركب ع = س + ص ت

ملحوظة: ١ = جتا ٠ + ت جا ٠ ، - ١ = جتاط + ت جاط

ت = جتا 🚾 + ت جا 🕝 ، - ت = جتا 👉 + ت جا

مقياس وسعة حاصل ضرب وقسمة عددين مركبين

 θ نفرض أن ع θ = ل θ (جتا θ + ت جا

 $\mathbf{g}_{\mathbf{y}} = \mathbf{b}_{\mathbf{y}} \cdot (\mathbf{g}_{\mathbf{y}} + \mathbf{b}_{\mathbf{y}} + \mathbf{b}_{\mathbf{y}})$

ع، ع $\gamma = 0$ ل $\gamma = 1$ (θ , θ , θ) + θ + θ + θ

 $g^{\dot{0}} = U^{\dot{0}}$ (جتان θ + ت جان θ)

 $\frac{3}{2}$ = $\frac{3}{5}$ [(جتا $(\theta - 1\theta)$ + ت حا $(\theta - 1\theta)$) حیث ع $y \neq y$

نتیجهٔ: إذا کان ع = ل (جتا θ + ت جا θ) فإن

 $\frac{1}{3} = \frac{1}{5} [$ جتا $(-\theta) +$ ت جا $(-\theta)$] أي أن مقياس $\frac{1}{3}$ هو $\frac{1}{5}$ وسعته $(-\theta)$

نظرية ديموافر

نظریة دیموافر (بدون برهان)

(جتا θ +ت جا θ) = جتان θ +ت جان θ ، ن عدد نسبی θ

ملحوظة ١٠٢١ إذا كان ك عددا موجبا فإن

(جتا θ + ت حا θ) = جتا θ + θ ب طر θ + جا θ ب طر θ

ر = ۲۰۲۰، ۳۰۰۰ سیک کی ط ا ای ان

المقدار جتا θ +ت جا θ يمكن إيجاد له ك من المجذور

الصورة الأسية للعدد المركب 💛

 $\theta = \omega + \omega$ ع $\theta = \omega + \omega$ حيث θ بالقياس الدائرى $\theta = \omega + \omega$ العمليات على الأعداد المركبة في الصورة الأاسية

رر هـ ٥٠٠ ت × ر۲ هـ ٥٠٠ ت = ١٥ ١٨٦ هـ (٥٠ +٩٠٠) ت

، ر ∈{،،،،،،،(ن–۱)} الجذور التكعيبية للواحد الصحيح

خواص الجذور التكعيبية للواحد الصحيح

أولا: أحد الجذور التكعيبية هو العدد الحقيقي ١ والآخران مركباني ومترافقان والجذور الثلاثة لها

ثانيا: نرمز لأحد الجذرين المركبين بالرمز ن والآخر ن حيث مربع أي من الجذرين المركبين = الجذر المركب الآخر

$$\omega' = -\omega$$
 ، $\omega' = -\omega$ ، $\omega' = -\omega$

$$\omega = \frac{1}{1}$$
 ، $\omega = \frac{1}{1}$ ومنها $\omega = 0$ ، $\omega = 0$ ، رابعا: ω

القوى الصحيحة للعدد

مسائل محتارة من امتحانات الثانوية العامة التباديل والتوافيق

١ ـ أوجد قيمة المجهول في كل معادلة مما يلي :

$$(i)$$
 (i) (i) (i) (i) (i) (i)

$$(3)^{\dot{0}}\ddot{\mathfrak{D}}_{\dot{0}-7} = 77 \qquad (4) | \underline{\dot{0}} = 777 \qquad (6) | \underline{\dot{0}-7} = 73$$

$$\frac{\mathbf{r}}{\mathbf{s}} = \frac{\dot{\mathbf{s}}\dot{\mathbf{s}}}{\dot{\mathbf{s}}} = \mathbf{d} \frac{\dot{\mathbf{s}}\dot{\mathbf{s}}}{\dot{\mathbf{s}}}$$
 (ط) $\dot{\mathbf{s}}\dot{\mathbf{s}}$ ق

 1 مايو ۹۸: إذا كان $^{\circ}$ ل $_{0}=7$ ، $_{1}$ $_{2}=7$ أوجد قيمة 7 ق

 m - دور أول ۲۰۱۱: إذا كان m ل $_{2}$ $_{3}$

ع۔ أغسطس ٩٧ : إذا كان إن = ... ، 0^{++} ق، 0^{++} ق، الله على الله عل أوجد قيمة ^{ن+ا}ل _{- ٢}

⟨ = ۳ فأوجد قيمة | ن - ۲ ر

حتاب المدرسة : اثبت أن : $^{\circ}$ ق ر + $^{\circ}$ ق ر + $^{\circ}$ ومن ثم $^{\circ}$ (ا) أوجد قيمة $\frac{1}{100}$ فيمة $\frac{1}{1$

۷ ـ دور ثان ۲۰۰۳: اثبت أن $\frac{\ddot{\sigma}^{1}}{\ddot{\sigma}_{0}} = \frac{\ddot{\sigma}^{1}}{\ddot{\sigma}_{0}} = \frac{\ddot$

نظرية ذابت المدين

٤

في مفكوك (س $\frac{1}{2} + \frac{1}{2}$) حيث ك عدد صحيح موجب أوجد

أولا: قيم ك التي تجعل للمفكوك حدا خاليا من س ثانيا: النسبة بين الحد الخالي من س ومعامل الحد الأوسط وذلك لأكبر قيم ك التي حصلت عليها في أولا

1 - دور أول $1 - 1 = \frac{1}{\omega}$ مفكوك $(m^2 + \frac{1}{m})^{m^2}$

(أولا) أوجد معامل الحد الذي يحتوي على m^{70} $[^{70}$ 0 0 $[^{10}$ 0 0] $[^{10}$ 0] $[^{10}$ 0] $[^{10}$ 0] $[^{10}$ 0] $[^{10}$] $[^{10}$] $[^{10}$] $[^{10}$]

۱۰- دور أول ۲۰۱۱

(۳) إذا كانت الحدود الثاني والثالث والرابع في مفكوك (س + ص) في حسب قوى س التنازلية هي على الترتيب ٢٤٠ ، ٧٢٠ ، ١٠٨٠ فما قيمة كل من س ، ص ، ن ؟

ا المان س= اثبت أن $\frac{1}{2}$

 $\frac{17}{1\times 7\times 7} = \frac{10\times 10\times 10^{10}}{1\times 7\times 7} = \frac{10\times 10^{10}}{1\times 7\times$

ص" + – ص

١٧- مصر ٨٨: إذا كان (٣ س - ٢) = أ س + ب س + جـ س + ج س + ء س + ء س + و أوجد قيمة أ + ب + جـ + ء + هـ + و

۱۲ أغسطس ۲۰۰۰ : في مفكوك $(m+\frac{7}{m})^{17}$ أوجد قيمة

(١) معامل الحد الأوسط (٢) قيمة الحد الخالي من س

9- يونيو 1.00: في مفكوك (أس + $\frac{1}{4}$) حسب قوى س التنازلية إذا كان الحد الخالي من س يساوي معامل الحد السابع فاثبت أن 1.00 أن 1.00 أن 1.00

۱۰ في مفكوك (۱ + س) حسب قوى س التصاعدية الدكان الحد الرابع يساوي ۷ أوجد قيمة س . ثم أوجد النسبة بين الحد السادس والحد الأوسط في هذا المفكوك $\left[\frac{1}{7}, \frac{1}{6}\right]$

۱۱_ یونیو ۲۰۰۱: في مفکوك (۶ س $+ \frac{1}{7}$) اوجد:

(۱) قيمة الحد الخالي من س (۲) قيمة س التي تجعل الحدين الأوسطين في المفكوك متساويان $\frac{1}{7}$ من س = $\frac{1}{7}$ الأوسطين في المفكوك متساويان

۱۲_ دور أول٠٠٠:

في مفكوك $\left(\frac{w}{\gamma} - \frac{3}{100}\right)^{1/2}$ حسب قوى س التنازلية أوجد:

عي سود (٢ - س) سبب عرق س ، سري ، رو. أولا: قيمة معامل س °

ثانيا: قيمة س التي تجعل مجموع الحدين الأوسطين مساويا الصفر

۱۳_ دور أول٤٠٠٠ :

ا اوجد معامل m^7 في مفكوك $(1-m)^{7}$ $(1+m)^{7}$ ا $(1+m)^{7}$

حل بنفسك : $\frac{2}{11}$ او جد معامل m^7 في مفكوك m ($m - \frac{2}{11}$) او جد معامل m^7 او جد معام

 $^{\circ}$ ۲- باستخدام مفکوك $(\ 1 + m \)^{\dot{U}}$ اثبت أ \dot{U} : $^{\dot{U}}$ ق $_{\dot{U}}$ + $^{\dot{U}}$ ق $_{\dot{U}}$ + $^{\dot{U}}$ ق $_{\dot{U}}$ + $^{\dot{U}}$ ق $_{\dot{U}}$ = $^{\dot{U}}$

الأعداد المركبة

 $\frac{V}{V} - C$ دور أول ۲۰۰۰: إذا كان $3_1 = \overline{C} + \overline{C} + \overline{C} + \overline{C} + \overline{C} + \overline{C}$ دور أول ۲۰۰۰: إذا كان $3_1 = \overline{C} + \overline{C} + \overline{C} + \overline{C} + \overline{C}$ عب $= -1 + \overline{C} + \overline{C} + \overline{C} + \overline{C} + \overline{C} + \overline{C}$ عب $= -1 + \overline{C} + \overline{C} + \overline{C} + \overline{C} + \overline{C} + \overline{C}$ عب أعلى الصورة الأسية

 $\frac{1}{2}$ اذا كان $\frac{\pi}{2} = \frac{1}{1+\sqrt{\pi}}$ أوجد ع على الصورة المثلثية

-1 - دور أول-7 : إذا كان العدد ع = $\frac{-1}{7}$ حيث -1 حيث -1

و کان ع $= \frac{1-3}{1+3}$ فأوجد العدد ع في الصورة المثلثية ، ثم اوجد الجذرين التربيعيين للعدد ع في الصورة الأسية الجذرين التربيعيين للعدد ع في الصورة الأسية $\frac{7}{4}$ م $\frac{7}{4}$

۲۰۰۲ دور ثان ۲۰۰۲

بوضع ی = $\frac{d}{\gamma}$ - γ أو بأي طريقة أخرى ، حيث Γ' = - γ اثبت أن γ + γ جنا ی + γ جتا ی γ = جتا ن γ + γ جنا ی + γ جتا ی γ = جتا ن γ + γ جنا ی + γ جنا ی γ = جتا ن γ

 ± 1 أوجد الجذر التربيعي للعدد المركب ± 1 ت ± 1 أوجد الجذر التربيعي للعدد المركب ± 1

۲۹۔ أوجد مجموعة الحل في كے للمعادلة ع 7 $_{-}$ 3 3 $^{+}$ $^{+}$ المعادلة ع 7 $_{-}$ $^{+}$ $^{+}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$

-7 إذا كان 3 + 7 = 0 = 7) حيث -7 = - 1 ، فأوجد العدد المركب ع على الصورة المثلثية ثم أوجد الجذرين التربيعيين للعدد ع في الصورة الأسية

٣١- أوجد كل من : | ٣ + ٤ ت | ، | - ٣ | ، | ٢ ت | [٥،٣،٢]

٣٨_ أوجد جذري المعادلة:

$$\omega'$$
 + (' + ۲ ω + ω') (' + ω + ۲ ω') = صفر $(\pm \pi)$

$$9 = {}^{4}\left(\frac{\omega+\omega}{\omega+\omega} - \frac{\omega+\omega^{2}\omega}{\omega+\omega}\right)^{2} = 9$$

.b * e b

حل بنفسك

$$1 = \frac{1 + \alpha^{7}}{1 + \omega^{1}}$$
 ($\frac{\omega + \omega}{1 + \omega} + \frac{\omega + \omega^{1}}{1 + \omega} + \frac{\omega}{1 + \omega^{1}}$) اثبت أن

 $\left(\frac{1}{\omega}\right)^{1} + \left(\frac{\omega}{\omega}\right)^{1} + \left(\frac{\omega}{\omega}$

هي أحد الجنور التكعيبية للواحد الصحيح فأوجد قيمة أ

۲۶ ـ دور أول ۱۱ ۰ 🔨

أوجد القيمة العددية للمقدار: $(\frac{1}{\omega^{+}} - \frac{1}{(\pi + \omega)^{+}})$

حل بنفسك: مايو ٢٠١٣:

$$(\frac{1}{\sqrt[3]{3}} + \frac{1}{\sqrt[3]{3}})$$
 اذا کان (س + ت ص) (۱ – ۳ت) = ۳۷ ازدا کان (س + ت ص)

فأوجد قيمة كل من س ، ص حيث س ، ص عددان حقيقيان

البذور التكعيبية للواحد الصحيح

٣٣ أغسطس٢٠٠٠:

۳۶_ مایه ۲۰۰۱ و اثبت آن

 $1 = \left(\frac{1}{2} + 1 + 1\right) \left(\frac{1}{2} + 1\right) \left(\frac{1}{2} + 1\right) = 1$

 $\ddot{\sigma} = (\ddot{\tau} + \frac{1}{\sqrt{\alpha}} + 1)(\ddot{\tau} + \frac{1}{\alpha} + 1) = \ddot{\tau}$ ۳- مایو ۲۰۰۰: اثبت أن

.....

$$1 = {}^{\mathsf{T}} \left(\frac{{}^{\mathsf{T}} - {}^{\mathsf{T}} \omega}{\omega} + \frac{{}^{\mathsf{T}} + {}^{\mathsf{T}} \omega}{{}^{\mathsf{T}} + {}^{\mathsf{T}} \omega} + \frac{{}^{\mathsf{T}} + {}^{\mathsf{T}} \omega}{{}^{\mathsf{T}} + {}^{\mathsf{T}} \omega} \right)^{\mathsf{T}} = 1$$

.....

$$\frac{\pi}{V} = \frac{{}^{\prime}\omega + {}^{\prime}}{\omega - {}^{\prime}\omega + {}^{\prime}} + \frac{\omega + {}^{\prime}}{{}^{\prime}\omega - \omega + {}^{\prime}}$$
 اثبت أن $\frac{\pi}{V} = \frac{{}^{\prime}\omega + {}^{\prime}}{\omega - \omega + {}^{\prime}}$ أغسطس ٩٨.

للواحد الصحيح فأوجد قيمة المقدار $\frac{0}{10}$ للواحد الصحيح

دور مان ۲۰۰۱: البت ان $\frac{7}{4}$ دور مان $\frac{7}{4}$ دور مان $\frac{7}{4}$ د الجذرين التربيعيين للمقدار $\frac{7}{4}$ د الم

 $\frac{2}{\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{2}} - \frac{\omega}{\sqrt{2}} - \frac{\omega}{\sqrt{2}} = -\frac{\omega}{\sqrt{2}}$ دور أول ۲۰۰۲: اثبت أن (

٤٦ - مصر ٩٠: أوجد العدد المركب ع الذي يحقق المعادلة ع ﴿ ﴿ عَ

 $\overline{\mathbb{T}}$ = صفر حیث $\overline{\mathbb{T}}$ مرافق ع $\overline{\mathbb{T}}$ صفر ا $\overline{\mathbb{T}}$ نا $\overline{\mathbb{T}}$

حل بنفسك:

(١) اثبت أن:

 7 ا 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(Y) اثبت أن : $\frac{\dot{(1+1)}}{(1-1)^{\dot{0}-1}} = Y$ ت $\dot{0}$ حيث $\dot{0} \in \mathcal{O}$

المددات

٤٧ ـ بدون فك المحدد اثبت أن:

$$\begin{array}{c|cccc}
 & & & & \downarrow \\
 & \downarrow$$

٥ ل + س ٥ م + ص ٥ ن + ع [1 : .] ٧ك ـ ٣ل ٧ ط ـ ٣م ٧ هـ ـ ٣ ن

٤٥ ـ دور أول ٢٠٠٢ بدون فك المحدد اثبت أن

٥٥- دور أول ٢٠١١ بدون فك المحددات اثبت أن:

ج م مايو ٩٩ : باستخدام طريقة كرامر حل المعادلات التالية :

س + ص = ٥ ، ٢س + ٩ص - ٤ع = ٣ ، ٢س + ٤ص - ٥ع = - ٤ [(٤,٣,٢)]

المرك حل بنفسك

مايو ٢٠١٣: إذا كانت مجموعة حل المعادلات س + ص + ع = أ ، س - ٢ص + ع = ٦ ، ٣س ٤٠ ص + ع = ٣ هي { (١، ب، ج)} فأوجد باستخدام طريقة كرامر قيمة كل مِن أ ، ب ، ج

مراجعة الجبر 9٤- مصر ٨١: أوجد قيمة ك بحيث تكون س عاملا للمحدد

٥٠ مصر ٨٧: إذا كانت ن أحد الجذور التكعيبية للواحد الصحيح

٥١ - مصر٩٣ ـ مصر ٨٤ : باستخدام خواص المحددات

$$(1 + 1 + 1)$$
 $(1 + 1 + 1)$ $(2 + 1 + 1)$ $(3 + 1 + 1)$ $(4 + 1 + 1)$ $(4 + 1 + 1)$ $(5 + 1)$ $(6 + 1)$ $(6 + 1)$

٥٢ - مايو ٩٦ : بدون فك المحدد أوجد مجموعة حل المعادلة

٥٣- دور أول ٢٠٠٣ إذا كان ل م ن = ٢ فأوجد قيمة

حلول جبر ۳ث

1. (i) ''
$$U_{c} = VY = VY = VY'$$

1. (i) '' $U_{c} = VY' = VY'$

1. (i) $U_{c} = VY' = VY'$

2. (i) $U_{c} = VY'$

2. (i) $U_{c} = VY'$

3. (ii) $U_{c} = VY'$

4. (ii) $U_{c} = VY'$

5. (ii) $U_{c} = VY'$

6. (ii) $U_{c} = VY'$

6. (ii) $U_{c} = VY'$

6. (iii) $U_{c} = VY'$

6. (iv) $U_{c} = VY'$

7. (iv) $U_{c} = VY'$

8. (iv) $U_{c} = VY'$

8. (iv) $U_{c} = VY'$

8. (iv) $U_{c} =$

7.
$$\frac{1}{1}$$
 $\frac{1}{1}$ \frac

$$(+)|k|_{\omega}\dot{v} = \dot{v}_{0} + \dot{v}_{0}\dot{v}_{0} + \dot{v}_{0}\dot{v}_{0}} = \dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0} + \dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0} + \dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0}\dot{v}_{0} + \dot{v}_{0}\dot{v}$$

٣ر = ١٠ د ر = ٥

 $V = V_{-1} = V_{-1} = V_{-1}$

 $0. \quad \mathsf{T}\mathsf{U} = \mathsf{V}\mathsf{I} \mathsf{U} \Rightarrow \mathsf{U}\mathsf{U} = \mathsf{U}\mathsf{U} \Rightarrow \mathsf{U} = \mathsf{U}$

 $= \sum_{k=1}^{N} \tilde{\mathbf{g}}_{k}(\mathbf{Y})^{k} \times \mathbf{w}^{-\mathbf{Y}_{k}} \times \mathbf{w}^{-\mathbf{Y}_{k-1}}$ $= \sum_{k=1}^{N} \tilde{\mathbf{g}}_{k}(\mathbf{Y})^{k} \times \mathbf{w}^{-\mathbf{Y}_{k-1}}$ حه هوالحد الخالي من س (اُس + برا) `` ثفرض أن ح يها هو الحد الخالي من س ح ر+١ ﴿ قَى ﴿ (الثَّانِي) ^ر (الأول) ^{ن- ر} ح. = ``ق ه × أ° معامل ح $_{V} =$ ق $_{V} \times \frac{\hat{I}^{*}}{\hat{I}_{V}}$ الحد الأوسط = معامل ح٧ $\frac{1}{2}$ ق، × $\frac{1}{2}$ = ``ق، × $\frac{1}{2}$ × $\frac{1}{2}$ $\frac{\ddot{\mathbf{b}}}{\ddot{\mathbf{b}}} = \dot{\mathbf{b}} \qquad \dot{\mathbf{b}} = \dot{\mathbf{b}}$ اب $|\dot{\eta} = \frac{\delta}{\gamma} = 1$

 $\frac{\frac{\circ \wedge}{q}}{\frac{\forall \vee}{q}} = \frac{\frac{1}{2} + \frac{1}{2}}{\frac{1}{2} + \frac{1}{2}} = \frac{1}{2}$ λ . $(\omega + \frac{\gamma}{\gamma})^{\gamma/2}$ (۱) رتبة الحد الأوسط = $\frac{17}{4}$ + 1 = ٧ $= \frac{7}{5}$ ق $_{7}$ ق $_{7}$ (س) $\frac{7}{1}$ = ۲۱ ق. (۲) (س) - ۲ معامل الحد الأوسط = ^{۱۲} ق. (۲) = ۹۱۳٦ معامل الحد الأوسط = ۱۳۲ نفرض أن ح ر $_{1+1}$ هو الحد الخالي من س $\dot{\sigma}_{(+1)} = \dot{\sigma}_{(1)} \dot{\sigma}_$ = ۲^۲ ق ر (س) (س) ۱۲-ر

 $T = {}^{7}$ ق $T = {}^{7}$ ق $T = {}^{7}$ (س) = "ق س س = "ق س س = معامل ح ؛ هو أق $\frac{7}{1} = \frac{\ddot{0}}{\ddot{5}} = \frac{7}{7}$ معامل ح $\frac{1}{2}$

نفرض ح ر $_{1+1}$ هوالحدالمشتمل على س $_{1+1}^{0}$ على س $_{1+1}^{0}$ ق ر $_{1}$ (الأول) $_{1+1}^{0}$ = $^{"0}$ ق ر $\left(\frac{1}{w_{1}}\right)^{1}\left(w_{1}\right)^{3}$ =^{"ن} ق ر(س) ^{- ر} (س) ^{۲ن ۲} ۲ = ^{"ن} ق _، س حن+1 هوالحد المشتمل على س"ن حن+۱ = "ن ق ن × س"ن

(٢) إذا كانت ن = ٦ يصبح المفكوك هو

 $\frac{1}{1}$

معامل اللحد المشتمل على س"ن هو ١٠ق ٦

رتبة الحد الأوسط = $\frac{1}{\sqrt{100}}$ + ا = ١٠

ح ١٠٠٠ هو الحد الأوسط

معامل الحد الأوسط = ١٨ ق.

١٣. في مفكوك (س ك + سر) (۱) نفرض أن σ_{c+1} هو الحد الخالي من س $\sigma_{c+1} = \bar{\sigma}$ ق ر (الثاني) $\sigma_{c+1} = \bar{\sigma}$

 $7 > c \ge 7 \implies c \in [7, 7]$

الحد الخالي من س هو ح=ق ه

رتبة الحد الأوسط = 👉 + ١ = ٤

 $1 = \frac{\left(\frac{1}{\sqrt{1 + \lambda}}\right)}{\sqrt{1 + \lambda}} \times \frac{1 + \lambda - 10}{\lambda}$

11. $(\frac{2}{\sqrt{2}} - \frac{7}{\sqrt{2}})$.17

(۱) نفرض أن ح _{ر+۱} هوالحدالمشتمل على س° ح ر+۱ = ^ن ق ر(الثاني) ^ر (الأول) ^{ن- ر}

 $= \frac{1}{5} \int_{0}^{1} \left(\frac{w}{v} \right)^{1} \left(\frac{\xi_{-}}{v} \right)^{1/2}$

 $= \sum_{j=1}^{N} (-\frac{3}{2})^{j} \times \frac{m^{N-N_{i}}}{\sqrt{1-c}} = \frac{1}{2}$

 $= \frac{1}{2}$ ق ر $\times \frac{(-\frac{2}{3})^{1}}{(-\frac{1}{3})^{2}} \times \frac{1}{1}$

ح_٨ هوالحد المشتمل على س°

 $_{0}^{\circ}$ ق $_{0}^{\circ} \times \frac{\sqrt{(\xi_{-})}}{2} \times _{0}^{\circ} \times _{0}^{\circ}$ کرد

 $^{\mathsf{WW9YV}} = \frac{^{\mathsf{V}}\left(\xi_{-}\right)}{^{\mathsf{W}}} \times ^{\mathsf{WW}} = 0$ معامل س = $^{\mathsf{V}}$ قی $^{\mathsf{WW}}$

ثانیا: رتبة أول حد أوسط = $\frac{1+1}{v}$ = ٦

ح، ، ح، هما الحدان الأوسطان

$$\nabla_r + \nabla_v = \frac{\nabla^r}{\nabla^r} \quad \cdot = \nabla^r + \nabla^r$$

معامل الحد المشتمل على س^{"ن} =
$$\frac{16}{10}$$
 = $\frac{7}{10}$ = $\frac{7}{10}$ = $\frac{7}{10}$ معامل الحد الأوسط

$$-\frac{10^{19}}{1 \times 7} + \frac{10^{10}}{1 \times 7} + \frac{10^{10}}{1 \times 7} - \frac{10^{10}}{1 \times 10^{10}} - \frac{10^{10}}{1 \times 10^{10}} - \frac{10^{10}}{1 \times 10^{10}} - \frac{10^{10}}{1 \times 10^{10}} = \frac{10^{10}}{10^{10}} - \frac{10^{10}}{10^{10}} - \frac{10^{10}}{10^{10}} - \frac{10^{10}}{10^{10}} = \frac{10^{10}}{10^{10}} - \frac{10^{10}$$

 $(1 + \epsilon_{\mu\nu})^{i}$ "" = "" + "" = "" + "" = "" + "" = "" + "" = "" + "" = "" + "" = "" + "" = "" + "" = "" = "" + "" =بمقارنة معاملات سُ في (١) ، (٢) لکن ۱۱ اً و ۳ آب معطی از ۳ س

 $\frac{0}{0} = \frac{1}{7} = \frac{1}{7} = \frac{1}{7} = \frac{1}{7} = \frac{1}{7}$

بالتعويض من (٣) في (٤) $Y = \rightarrow \leftarrow Y = \rightarrow Y - Y$

 $(1-\omega)^{\vee}(1-\omega)^{\vee}=(1-\omega)^{\vee}$ و المطلوب معامل س'

 $^{-1}$ نفرض أن ح $_{1+1}$ هو الحد المشتمل على س $= {}^{1}$ ق ر(- س $^{1})^{\prime} = {}^{1}$ ق ر(- ۱)

 $^{\mathsf{NO}}_{-} = ^{\mathsf{NO}}_{-} = ^{\mathsf{NO}}_{-} = ^{\mathsf{NO}}_{-} = ^{\mathsf{NO}}_{-}$ معامل ح

= $^{\circ}$ (+ + + +) $^{\circ}$ =ا - ۱ ا نق ، س+ ^نق ، س^۲ + + س ن = ^نق. + ^نق، س+ ^نق، س^۲ + ... + ^نق، س نضع س = ١ في الطرفين $Y^{\dot{0}} = {}^{\dot{0}}$ ق. + ${}^{\dot{0}}$ ق. + ${}^{\dot{0}}$ ق.

 $-1^{1} = 1^{$ س أأ الم المقارنة المقارنة المقارنة

٤ ج، + ١١ (جم + جم) = صفر $\frac{1}{3}$ $\frac{1}{3}$ غ × القيء - ١١ × أق ١ + ١١ × أق ١ أ = ٠

بالقسامة على ''ق س على 'آق ب الما بالقرام بالقرام بالقرام بالقرام بالقرام بالقرام بالما بالقرام بالقرام بالقرام بالقرام بالما بال

 $\frac{1}{11} \times \dots \cdot = \frac{1}{11} \times 11 + \frac{1}{11} \times \frac{1}{11} \times 1$

 $\frac{m}{r} = \frac{m}{l} = \frac{m$ حيث heta في الربع الرابع $\theta = 0$, " $\theta = \frac{\pi}{4} = \theta$ θ = θ (جتا θ + θ + θ $3^{7} = \frac{1}{\sqrt{2}} (جتا + ت جا + ت جا + ط)$ $\frac{1}{\sqrt{1}}\left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}} + \frac{1$ $=\frac{\frac{7}{7}}{\sqrt{7}}$ (جتا $\frac{\frac{9}{7}}{7}$ + ت جا $\frac{\frac{9}{7}}{7}$ + ت جا $3 = \frac{1}{\sqrt[7]{7}}$ (جتا $\frac{6}{9} +$ ت جا $\frac{6}{9} +$ $3 = \frac{1}{\sqrt[n]{7}} \left(\frac{11}{4} + \frac{1}{2} + \frac{11}{4} + \frac{1}{4} \right)$ ع = (جتا ۱۷ ط + ت جا ۱۷ ط)

جتا (موجبة ، جا ط سالبة في الربع الرابع $\theta = 7 \frac{d}{d} = \frac{d}{2} = \frac{d}{2} = \frac{d}{2} = \frac{d}{2}$ $3/ = 0 \quad \Rightarrow 3/ = 4^{\frac{d}{2}} \quad \Rightarrow 3/ = 4^{\frac{d}{2}} \quad \dots (1)$ $\frac{1}{\sqrt{1}} = \theta$ خا θ في الربع الثاني θ 37. $3^{7} = \frac{1}{1 + \sqrt{7} \, \ddot{x}} \times \frac{1 - \sqrt{7} \, \ddot{x}}{1 - \sqrt{7} \, \ddot{x}}$ $\frac{\vec{w} \cdot \vec{w} - 1}{\epsilon} = \frac{\vec{w} - 1}{\epsilon} = \frac{\vec{w} \cdot \vec{w} - 1}{\epsilon} = \frac{\vec{w} \cdot \vec{w} - 1}{\epsilon} = \frac{\vec{w} \cdot \vec{w} - 1}{\epsilon} = \frac{\vec{w} - 1}{\epsilon} = \frac{\vec{$ $|3 = \frac{1}{2} - \frac{\sqrt{7}}{2}$ ت = ل(جتا θ + ت جا θ) $U = \frac{1}{r} + \frac{\pi}{17} + \frac{\pi}{17}$

ع_۲= (جتا (+ ت جا ()) ، ت = ۱ ع، ع، = ٤ (جتا ب + ت جا ب) × ط ط (جتا پ) ع ط + ت جا س + ت جا س + 1 ط + 1 جا م + 1 ط + 1 ع ع ع ج ع ع الله ع م ع ع الله ع م ع الله $\sqrt{3} \cdot 3_{7} = \left(3 \angle \frac{3}{7} \angle 2 \right)^{\frac{1}{7}}$ $\sqrt{3/37} = 7 \text{ A.} \frac{\theta + 7 \pm c}{7} =$ $\mathbf{V} = \mathbf{V} \mathbf{w} + \mathbf{w} = \mathbf{V} \mathbf{v}$

 $\frac{1}{\sqrt{1}} = \frac{\omega}{U} = -\frac{1}{\sqrt{1}}, \quad \neq 1 = -\frac{\omega}{U} = -\frac{1}{\sqrt{1}}$ ه تقع في الربع الثاني هـ = ١٨٠ = ٤٥ _ ١٨٠ = ه $w+z=w-\frac{7}{4}$ ($z=w+\frac{7}{4}$ $\begin{pmatrix} \lambda \end{pmatrix}^{+} + \frac{\nabla}{2} \begin{pmatrix} \nabla \\ \nabla \end{pmatrix} \begin{pmatrix} \nabla \\ \nabla \end{pmatrix} = \begin{pmatrix} \lambda \end{pmatrix}$ (س+ت ص) = ۱۱ (جتا ۱۰۸۰ ' + ت جا ۱۰۸۰ ') $17 = (\cdot + 1) 17 =$ ∴ (س+ت ص) : ١٦ = ١٦ $\frac{\Delta L}{\Delta L} \frac{\Delta L}{\Delta L} = \frac{\Delta L}{\Delta L}$ $\Delta L = \frac{\Delta L}{\Delta L}$ $= (-72)^{1} = 712^{1} = 7111$ ۲۸. نفرض أن $\sqrt{7+3}$ = س+ ص ت بتربيع إلطرفين اس کے ص +۲س ص ت = ۲+٤ ت (1) T = 'w ٢ س ص = ٤ (٢) بترابيع كل من (١) ، (٢) س + س ص + ص = ٢٥ (*)(*) $Y \pm = \omega \leftarrow \lambda = V$ بالتعويض في (٢) $1 \pm 2 = 2 \Rightarrow 0 = 1 \pm 2$

 $(1+1)^{\dagger}$ جتا(0-1+1+1) جتا $(0-1)^{\dagger}$ θ جتا θ - ۱ - ۲ جا θ جتا θ ت $^{\circ}$ جتا θ + ۲ جا θ جتا θ ت $\tau = \frac{\theta^{1}}{2}$ ۲ جا θ جتا θ ت 🤻 جتا ٔ 🖰 + ۲ جا🛭 جتا θ ت 🦒 ۲ جتا ً 🖰 ۲ جا 🖯 جتا 🖰 ت بالقسمة على ٧جتا بسطا ومقاما جتا<u>ط</u> + ت جاθ) جتا + ت چا جتا(– θ) آت جا(–θ) $^{\circ}(\theta + \nabla + \theta)^{\circ}$ $S = \frac{1}{4} = \theta \times \Theta = \theta \times \Theta = \frac{1}{4} = S$ $\stackrel{\square}{|}$ المقدار= [جتا $(\frac{\neg}{\neg}-arphi)+arphi$ ب $(\frac{d}{\sqrt{\gamma}} - \omega) + \overline{\omega} + \omega$ = (جتا ن = $(\frac{d}{\sqrt{\gamma}} - \omega)$ -1 (۱ – ت) س + (۱ + ت) ص = ۲ ت (س+ص)+(- س+ ص) ニード س + ص = ۰ (Y) $Y = \omega + \omega$ (۲) ، (۲) . (۲) ۲ ص = ۲ بالتعويض في (١) 1 = 0 \leftarrow 0 = 1 + 0س + ت ص = ـ ١ + ت

 $3_{1} = \frac{1 - 3}{1 + 3} = \frac{1 - (\frac{-1 + \sqrt{\eta} \ddot{\nu}}{7})}{1 + (\frac{-1 + \sqrt{\eta} \ddot{\nu}}{2})} \times \frac{7}{7}$ $\frac{\vec{r} \cdot \vec{r} \cdot \vec{r}}{\vec{r} \cdot \vec{r}} = \frac{\vec{r} \cdot \vec{r}}{\vec{r}} = \frac{\vec{r}}{\vec{r}} = \frac{\vec{r}}{\vec{r}$ ع ۱ = ٢٠٠٠ ت = - ٢٠٠٠ ت = ١٤ $\sqrt{\frac{4}{7}}$ (جتا $\frac{4}{7}$ + ت جا $\frac{4}{7}$) $\sqrt{-}$ $\sqrt{3}_{1} = \sqrt{\sqrt{7}} \triangleq \frac{74}{7} + 74c$ $\sqrt{3}_{1} = \sqrt{7} = 4$ $\sqrt{3} = \sqrt{3}$ $c = \cdot \implies \sqrt{3} = \sqrt[3]{7} \triangleq \frac{74}{2}$ (1 + جا ی + ت جتا ی) ۲۲. (1 + جا ی - ت حتا ی) $\left[\left(\theta^{\gamma} - \frac{\gamma}{\mu}\right) + \frac{\gamma}{\mu} + \frac{\gamma}{\mu}\right] + \frac{\gamma}{\mu}$ $\left(\theta^{\gamma} - \frac{1}{4}\right) = -\left(\theta^{\gamma} - \frac{1}{4}\right) + 1$

س + ص ت = ± ۲ ± 1ت

 $(\ddot{\tau} + \dot{\tau}) \pm = \ddot{\tau} + \tau \sqrt{\tau}$

۲۹. ع^۲ ـ ٤ ع + ۸ = صفر

ع + ۲ = ت ع – ۲ ت

ع _ ت ع = _ ۲ _ ۲ ت

 $\Lambda = -3$ ، $\varphi = -3$ ، $\varphi = 1$

 $\frac{17 - \sqrt{11} + \epsilon}{2} = \frac{77 - 17 \sqrt{11} + \epsilon}{2} = \frac{17 - 17 \sqrt{11} + \epsilon$

<u>۲+ ۲= ت + ۶ = ۲ ت ۲ + ۶ = ۲ ت ۲ + ۶ = ۲ ت ۲ + ۶ = ۲ ت ۲ + ۶ ت ۲ ت ۲ + ۶ ت ۲ ت ۲ + ۶ ت ۲ ت ۲ ۲ ت ۲ ت ۲ ۲ ت ۲ ۲ ت ۲ ت ۲ ۲ ت ۲ </u>

 * ۳. إذا كان ع + ۲ = ت (ع – ۲)

 $= Y(-\bar{c}) = Y(+\bar{c}) + \bar{c} + \bar{c} + \bar{c}$

 $c = \cdot \implies \sqrt{3} = \sqrt{7} \triangleq \frac{74}{2}$

۳۱. | ۳ + ؛ ت | = √۹ + ۲۱ = ٥

 $r = \overline{\cdot + 9} / = |r - |$

 $\sqrt{3} = \sqrt{7} \, \text{A} \frac{\frac{74}{7} + 74c}{7} = \sqrt{7} \, \text{A} \frac{\frac{74 + 34c}{7}}{2} = \sqrt{7} \, \text{A}$

$$= (\ddot{\mathbf{r}} - \mathbf{\omega})(\ddot{\mathbf{r}} - \mathbf{\omega}^{\dagger})$$

$$= \ddot{\mathbf{r}}^{\dagger} - \mathbf{\omega}^{\dagger} \ddot{\mathbf{r}} - \mathbf{\omega} \ddot{\mathbf{r}} + \mathbf{\omega}^{\dagger}$$

$$= -\mathbf{r} - \ddot{\mathbf{r}} (\mathbf{\omega}^{\dagger} + \mathbf{\omega}) + \mathbf{r}$$

$$= -\ddot{\mathbf{r}} \times - \mathbf{r} = \ddot{\mathbf{r}}$$

$$7^{\prime\prime\prime}. \left(\frac{\vee + \frac{1}{2} \omega}{\vee \omega^{\prime} + \frac{1}{2}} + \frac{\circ \omega^{\prime} - \psi}{\circ - \psi \omega}\right)^{\prime\prime}$$

$$= \left(\frac{\vee \omega^{\prime} + \frac{1}{2} \omega}{\vee \omega^{\prime} + \frac{1}{2}} + \frac{\circ \omega^{\prime} - \psi \omega^{\prime}}{\circ - \psi \omega}\right)^{\prime\prime}$$

$$= \left(\frac{\omega(\vee \omega^{\prime} + \frac{1}{2})}{(\vee \omega^{\prime} + \frac{1}{2})} + \frac{\omega^{\prime}(\circ - \psi \omega)}{(\circ - \psi \omega)}\right)^{\prime\prime}$$

$$= \left(\frac{(\vee \omega^{\prime\prime} + \frac{1}{2})}{(\vee \omega^{\prime\prime} + \frac{1}{2})} + \frac{(\circ - \psi \omega)}{(\circ - \psi \omega)}\right)^{\prime\prime}$$

$$= \left(\frac{(\vee \omega^{\prime\prime} + \frac{1}{2})}{(\vee \omega^{\prime\prime} + \frac{1}{2})} + \frac{(\circ - \psi \omega)}{(\circ - \psi \omega)}\right)^{\prime\prime}$$

$$\frac{(\omega + \omega) - (-1)}{(\omega + \omega)}$$

$$\frac{(\omega + \omega)}{(\omega - \omega)^{2}} + \frac{(\omega + \omega)^{2}}{(\omega - \omega)^{2}} + \frac{(\omega + \omega)^{2}}{(\omega - \omega)^{2}}$$

$$= \frac{((\omega + \omega)^{2}) + ((\omega - \omega)^{2}) + ((\omega + \omega)^{2}) + ((\omega +$$

$$= (\frac{(r + r) - (w + r))}{(w + r)(r + r)})^{r}$$

$$= (\frac{r + r) + r}{(w + r)(r + r)}$$

$$= (\frac{r + r) + r}{(w + w + r)}$$

$$= (\frac{r + r) + r}{(w + w + r)}$$

$$= (\frac{r + r) + r}{(w + w + r)}$$

$$= (\frac{r + r) + r}{(w + w + r)}$$

$$= \frac{r + r}{(w + r)}$$

$$=\frac{0}{0} + \frac{1}{1} + \frac{1$$

$$\begin{array}{c} w' + (\omega) (\omega') = -\omega i \zeta \\ w' + (\omega') = -\omega i \zeta$$

الطرف الأيمن

$$\begin{vmatrix} \dot{} & \dot{\dot{} & \dot{} & \dot{} & \dot{} & \dot{} & \dot{\dot{}} &$$

$$\Delta = (-\dot{})(\dot{} -\dot{}) \times \dot{} \times \dot{} \times \dot{} \times \dot{} \times \dot{} \times \dot{} = \dot{} \times \dot{} \times$$

س ا ب ص ۱ م ص ۱ – ب ص ۱

$$= \frac{\frac{3}{4}}{\frac{7}{4}}$$

$$3 = \frac{\frac{3}{4}}{\frac{7}{4}}$$

$$\Rightarrow \sqrt{3} = \frac{7}{4}$$

$$\Rightarrow \sqrt{3} = \frac{7}{4}$$

$$\therefore \frac{7}{4}$$

$$\Rightarrow \sqrt{3} = \frac{7}{4}$$

$$\Rightarrow \sqrt{3} = \frac{7}{4}$$

$$\Rightarrow \sqrt{3} = \frac{7}{4}$$

ص ۲ ـ ص ۱ ، ص ۳ ـ ص ۱

المحدد =

$$= (\omega + l + \mu) \times l \times (\omega - \mu)(\omega - l)$$

$$= (\omega + l + \mu)(\omega - l)(\omega - \mu)$$

$$\Delta = \dot{\Sigma}$$
 $\Delta = \dot{\Sigma}$ $\Delta = \dot{\Sigma}$

$$1 \cdot \mathbf{1} = \begin{vmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{vmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1}$$

$$\sharp = \frac{\xi \Delta}{\Delta} = \xi \cdot \pi = \frac{\Delta \omega}{\Delta} = \pi \cdot 3 = \frac{\xi \Delta}{\Delta}$$

$$(\sharp \cdot \pi \cdot \pi) = \sharp \Delta$$

$$\begin{vmatrix} \cdot & 1 & 1 \\ \vdots & \circ & 1 \\ \circ & \vdots & 1 \end{vmatrix} = \Delta \cdot \cdot \circ \cdot$$

$$\begin{vmatrix} \omega & \omega & \omega \\ \dot{\omega} & \dot{\omega} & \dot{\omega} \\ \dot{\omega} & \dot{\omega} & \dot{\omega} \end{vmatrix} \times V \times V = \Delta$$
 $1 : \cdot = V \times V \times V \cdot = \Delta$

$$|1 \times 3\pi + 3|$$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$
 $|-7|$

٥٥. بجمع الصفوف الثلاثة

$$Y = \frac{1}{2} + \frac{1}{2} +$$